Cloud Categories - ScaleOut Software https://www.scaleoutsoftware.com/cloud/ In-Memory Data Grids for the Enterprise Mon, 19 Jun 2023 23:29:46 +0000 en-US hourly 1 https://wordpress.org/?v=6.5.5 Deploying ScaleOut’s Distributed Cache In Google Cloud https://www.scaleoutsoftware.com/featured/deploying-scaleouts-distributed-cache-in-google-cloud/ https://www.scaleoutsoftware.com/featured/deploying-scaleouts-distributed-cache-in-google-cloud/#respond Tue, 20 Jun 2023 13:00:14 +0000 https://www.scaleoutsoftware.com/?p=13516 by Olivier Tritschler, Senior Software Engineer Because of their ability to provide highly elastic computing resources, public clouds have become a highly attractive platform for hosting distributed caches, such as ScaleOut StateServer®. To complement its current offerings on Amazon AWS and Microsoft Azure, ScaleOut Software has just announced support for the Google Cloud Platform. Let’s […]

The post Deploying ScaleOut’s Distributed Cache In Google Cloud appeared first on ScaleOut Software.

]]>
Deploying ScaleOut's Distributed Cache In Google Cloud

by Olivier Tritschler, Senior Software Engineer

Because of their ability to provide highly elastic computing resources, public clouds have become a highly attractive platform for hosting distributed caches, such as ScaleOut StateServer®. To complement its current offerings on Amazon AWS and Microsoft Azure, ScaleOut Software has just announced support for the Google Cloud Platform. Let’s take a look at some of the benefits of hosting distributed caches in the cloud and understand how we have worked to make both deployment and management as simple as possible.

Distributed Caching in the Cloud

Distributed caches, like ScaleOut StateServer, enhance a wide range of applications by offering shared, in-memory storage for fast-changing state information, such as shopping carts, financial transactions, geolocation data, etc. This data needs to be quickly updated and shared across all application servers, ensuring consistent tracking of user state regardless of the server handling a request. Distributed caches also offer a powerful computing platform for analyzing live data and generating immediate feedback or operational intelligence for applications.

Built using a cluster of virtual or physical servers, distributed caches automatically scale access throughput and analytics to handle large workloads. With their tightly integrated client-side caching, these caches typically provide faster access to fast-changing data than backing stores, such as blob stores and database servers. In addition, they incorporate redundant data storage and recovery techniques to provide built-in high availability and ensure uninterrupted access if a server fails.

To meet the needs of elastic applications, distributed caches must themselves be elastic. They are designed to transparently scale upwards or downwards by adding or removing servers as the workload varies. This is where the power of the cloud becomes clear.

Because cloud infrastructures provide inherent elasticity, they can benefit both applications and distributed caches. As more computing resources are needed to handle a growing workload, clouds can deploy additional virtual servers (also called cloud “instances”). Once a period of high demand subsides, resources can be dialed back to minimize cost without compromising quality of service. The flexibility of on-demand servers also avoids costly capital investments and reduces management costs.

Deploying ScaleOut’s Distributed Cache in the Google Cloud

A key challenge in using a distributed cache as part of a cloud-hosted application is to make it easy to deploy, manage, and access by the application. Distributed caches are typically deployed in the cloud as a cluster of virtual servers that scales as the workload demands. To keep it simple, a cloud-hosted application should just view a distributed cache as an abstract entity and not have to keep track of individual caching servers or which data they hold. The application does not want to be concerned with connecting N application instances to M caching servers, especially when N and M (as well as cloud IP addresses) vary over time. In particular, an application should not have to discover and track the IP addresses for the caching servers.

Even though a distributed cache comprises several servers, the simplest way to deploy and manage it in the cloud is to identify the cache as a single, coherent service. ScaleOut StateServer takes this approach by identifying a cloud-hosted distributed cache with a single “store” name combined with access credentials. This name becomes the basis for both managing the deployed servers and connecting applications to the cache. It lets applications connect to the caching cluster without needing to be aware of the IP addresses for the cluster’s virtual servers.

The following diagram shows a ScaleOut StateServer distributed cache deployed in Google Cloud. It shows both cloud-hosted and on-premises applications connected to the cache, as well as ScaleOut’s management console, which lets users deploy and manage the cache. Note that while the distributed cache and applications all contain multiple servers, applications and users can access the cache just by using its store name.

Diagram shows both cloud-hosted and on-premises client applications seamlessly accessing ScaleOut StateServer in Google Cloud.

Building on the features developed for the integration of Amazon AWS and Microsoft Azure, the ScaleOut Management Console now lets users deploy and manage a cache in Google Cloud by just specifying a store name and initial number of servers, as well as other optional parameters. The console does the rest, interacting with Google Cloud to start up the distributed cache and configure its servers. To enable the servers to form a cluster, the console records metadata for all servers and identifies them as having the same store name.

Here’s a screenshot of the console wizard used for deploying ScaleOut StateServer in Google Cloud:

Screenshot of the ScaleOut Management Console shows deployment of a a distributed cache to Google Cloud with just a name and number of instances.

The management console provides centralized, on-premises management for initial deployment, status tracking, and adding or removing servers. It uses Google’s managed instance groups to host servers, and automated scripts use server metadata to guarantee that new servers automatically connect with an existing store. The managed instance groups used by ScaleOut also support defining auto-scaling options based on CPU/Memory usage metrics.

Instead of using the management console, users can also deploy ScaleOut StateServer to Google Cloud directly with Google’s Deployment Manager using optional templates and configuration files.

Simplifying Connectivity for Applications

On-premises applications typically connect each client instance to a distributed cache using a fixed list of IP addresses for the caching servers. This process works well on premises because the cache’s IP addresses typically are well known and static. However, it is impractical in the cloud since IP addresses change with each deployment or reboot of a caching server.

To avoid this problem, ScaleOut StateServer lets client applications specify a store name and credentials to access a cloud-hosted distributed cache. ScaleOut’s client libraries internally use this store name to discover the IP addresses of caching servers from metadata stored in each server.

The following diagram shows a client application connecting to a ScaleOut StateServer distributed cache hosted in Google Cloud. ScaleOut’s client libraries make use of an internal software component called a “grid mapper” which acts as a bootstrap mechanism to find all servers belonging to a specified cache using its store name. The grid mapper accesses the metadata for the associated caching servers and returns their IP addresses back to the client library. The grid mapper handles any potential changes in IP addresses, such as servers being added or removed for scaling purposes.

Diagram shows a clustered client application accessing a clustered distributed cache by its name using a "grid mapper" software component.

Summing up

Because they provide elastic computing resources and high performance, public clouds, such as Google Cloud, offer an excellent platform for hosting distributed caches. However, the ephemeral nature of their virtual servers introduces challenges for both deploying the cluster and connecting applications. Keeping deployment and management as simple as possible is essential to controlling operational costs. ScaleOut StateServer makes use of centralized management, server metadata, and automatic client connections to address these challenges. It ensures that applications derive the full benefits of the cloud’s elastic resources with maximum ease of use and minimum cost.

 

The post Deploying ScaleOut’s Distributed Cache In Google Cloud appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/featured/deploying-scaleouts-distributed-cache-in-google-cloud/feed/ 0
Simulate at Scale with Digital Twins https://www.scaleoutsoftware.com/featured/simulate-at-scale-with-digital-twins/ https://www.scaleoutsoftware.com/featured/simulate-at-scale-with-digital-twins/#respond Tue, 21 Feb 2023 14:00:39 +0000 https://www.scaleoutsoftware.com/?p=12193   Digital Twins Can Implement Both Streaming Analytics and Simulations With the ScaleOut Digital Twin Streaming Service™, the digital twin software model has proven its versatility well beyond its roots in product lifecycle management (PLM). This cloud-based service uses digital twins to implement streaming analytics and add important contextual information not possible with other stream-processing […]

The post Simulate at Scale with Digital Twins appeared first on ScaleOut Software.

]]>
Header image with four pictures: smart city, power grid, logistics, and gas card purchase.

 

Digital Twins Can Implement Both Streaming Analytics and Simulations

With the ScaleOut Digital Twin Streaming Service™, the digital twin software model has proven its versatility well beyond its roots in product lifecycle management (PLM). This cloud-based service uses digital twins to implement streaming analytics and add important contextual information not possible with other stream-processing architectures. Because each digital twin can hold key information about an individual data source, it can enrich the analysis of incoming telemetry and extracts important, actionable insights without delay. Hosting digital twins on a scalable, in-memory computing platform enables the simultaneous tracking of thousands — or even millions — of data sources.

Owing to the digital twin’s object-oriented design, many diverse applications can take advantage of its powerful but easy-to-use software architecture. For example, telematics applications use digital twins to track telemetry from every vehicle in a fleet and immediately identify issues, such as lost or erratic drivers or emerging mechanical problems. Airlines can use digital twins to track the progress of passengers throughout an itinerary and respond to delays and cancellations with proactive remedies that smooth operations and reduce stress. Other applications abound, including health informatics, financial services, logistics, cybersecurity, IoT, smart cities, and crime prevention.

Here’s an example of a telematics application that tracks a large fleet of vehicles. Each vehicle has a corresponding digital twin analyzing telemetry from the vehicle in real time:

Image showing a fleet of vehicles in the USA. Each vehicle has a corresponding digital twin analyzing telemetry from the vehicle in real time.

Applications like these need to simultaneously track the dynamic behavior of numerous data sources, such as IoT devices, to identify issues (or opportunities) as quickly as possible and give systems managers the best possible situational awareness. To either validate streaming analytics code for a complex physical system or model its behavior, it is useful to simulate the devices and the telemetry that they generate. The ScaleOut Digital Twin Streaming Service now enables digital twins to simplify both tasks.

Use Digital Twins to Simulate a Workload for Streaming Analytics

Digital twins can implement a workload generator that generates telemetry used in validating streaming analytics code. Each digital twin models the behavior of a physical data source, such as a vehicle in fleet, and the messages it sends and receives. When running in simulation, thousands of digital twins can then generate realistic telemetry for all data sources and feed streaming analytics, such as a telematics application, designed to track and analyze its behavior. In fact, the streaming service enables digital twins to implement both the workload generator and the streaming analytics. Once the analytics code has been validated in this manner, developers can then deploy it to track a live system.

Here’s an example of using a digital twin to simulate the operations of a pump and the telemetry (such as the pump’s temperature and RPM) that it generates. Running in simulation, this simulated pump sends telemetry messages to a corresponding real-time digital twin that analyzes the telemetry to predict impending issues:

Once the simulation has validated the analytics, the real-time digital twin can be deployed to analyze telemetry from an actual pump:

Image of a data source sending messages to a real-time digital twin that analyzes the messages and enables data aggregation and visualization.

This example illustrates how digital twins can both simulate devices and provide streaming analytics for a live system.

Using digital twins to build a workload generator enables investigation of a wide range of scenarios that might be encountered in typical, real-world use. Developers can implement parameterizable, stateful models of physical data sources and then vary these parameters in simulation to evaluate the ability of streaming analytics to analyze and respond in various situations. For example, digital twins could simulate perimeter devices detecting security intrusions in a large infrastructure to help evaluate how well streaming analytics can identify and classify threats. In addition, the streaming service can capture and record live telemetry and later replay it in simulation.

Use Digital Twins to Simulate a Large System with Many Entities

In addition to using digital twins for analyzing telemetry, the ScaleOut Digital Twin Streaming Service enables digital twins to implement time-driven simulations that model large groups of interacting physical entities. Digital twins can model individual entities within a large system, such as airline passengers, aircraft, airport gates, and air traffic sectors in a comprehensive airline model. These digital twins maintain state information about the physical entities they represent, and they can run code at each time step in the simulation model’s execution to update digital twin state over time.  These digital twins also can exchange messages that model interactions.

For example, an airline tracking system can use simulation to model numerous types of weather delays and system outages (such as ground stops) to see how their system manages passenger needs. As the simulation model evolves over time, simulated aircraft can model flight delays and send messages to simulated passengers that react by updating their itineraries. Here is a depiction of an airline tracking simulation:

Image of airplanes, passengers, and airports as a digital twin simulation for an airline.

In contrast to the use of digital twins for PLM, which typically embody a complex design within a single digital twin model, the ScaleOut Digital Twin Streaming Service enables large numbers of physical entities and their interactions to be simulated. By doing this, simulations can model intricate behaviors that evolve over time and reveal important insights during system design and optimization. They also can be fed live data and run faster than real time as a tool for making predictions that assist decision-making by managers (such as airline dispatchers).

Scalable, In-Memory Computing Makes It Possible

Digital twins offer a compelling software architecture for implementing time-driven simulations with thousands of entities. In a typical implementation, developers create multiple digital twin models to describe the state information and simulation code representing various physical entities, such as trucks, cargo, and warehouses in a telematics simulation. They create instances of these digital twin models (simply called digital twins) to implement all of the entities being simulated, and the streaming service runs their code at each time step being simulated. During each time step, digital twins can exchange messages that represent simulated interactions between physical entities.

The ScaleOut Digital Twin Streaming Service uses scalable, in-memory computing technology to provide the speed and memory capacity needed to run large simulations with many entities. It stores digital twins in memory and automatically distributes them across a cluster of servers that hosts a simulation. At each time step, each server runs the simulation code for a subset of the digital twins and determines the next time step that the simulation needs to run. The streaming service orchestrates the simulation’s progress on the cluster and advances simulation time at a rate selected by the user.

In this manner, the streaming service can harness as many servers as it needs to host a large simulation and run it with maximum throughput. As illustrated below, the service’s in-memory computing platform can add new servers while a simulation is running, and it can transparently handle server outages should they occur. Users need only focus on building digital twin models and deploying them to the streaming service.

Image of airplanes and airports that demonstrates how in-memory computing can simulate at scale.

The Next Generation of Simulation with Digital Twins

Digital twins have historically been employed as a tool for simulating increasingly detailed behavior of a complex physical entity, like a jet engine. The ScaleOut Digital Twin Streaming Service takes digital twins in a new direction: simulation of large systems. Its highly scalable, in-memory computing architecture enables it to easily simulate many thousands of entities and their interactions. This provides a powerful new tool for extracting insights about complex systems that today’s managers must operate at peak efficiency. Its analytics and predictive capabilities promise to offer a high return on investment in many industries.

The post Simulate at Scale with Digital Twins appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/featured/simulate-at-scale-with-digital-twins/feed/ 0
Unlocking New Capabilities for Azure Digital Twins with Real-Time Analytics https://www.scaleoutsoftware.com/featured/unlocking-new-capabilities-for-adts-with-real-time-analytics/ https://www.scaleoutsoftware.com/featured/unlocking-new-capabilities-for-adts-with-real-time-analytics/#respond Tue, 09 Nov 2021 14:00:55 +0000 https://www.scaleoutsoftware.com/?p=8485 The Need for Real-Time Analytics with Digital Twins In countless applications that track live systems, real-time analytics plays a key role in identifying problems (or finding opportunities) and responding fast enough to make a difference. Consider a software telematics application that tracks a nationwide fleet of trucks to ensure timely deliveries. Dispatchers receive telemetry from trucks […]

The post Unlocking New Capabilities for Azure Digital Twins with Real-Time Analytics appeared first on ScaleOut Software.

]]>
Giving Azure Digital Twins the Power of Real-Time Analytics

The Need for Real-Time Analytics with Digital Twins

In countless applications that track live systems, real-time analytics plays a key role in identifying problems (or finding opportunities) and responding fast enough to make a difference. Consider a software telematics application that tracks a nationwide fleet of trucks to ensure timely deliveries. Dispatchers receive telemetry from trucks every few seconds detailing location, speed, lateral acceleration, engine parameters, and cargo viability. In a classic needle-and-haystack scenario, dispatchers must continuously sift through telemetry from thousands of trucks to spot issues, such as lost or fatigued drivers, engines requiring maintenance, or unreliable cargo refrigeration. They must intervene quickly to keep the supply chain running smoothly. Real-time analytics can help dispatchers tackle this seemingly impossible task by automatically sifting through telemetry as it arrives, analyzing it for anomalies needing attention, and alerting dispatchers when conditions warrant.

By using a process of divide and conquer, digital twins can dramatically simplify the construction of applications that implement real-time analytics for telematics or other applications. A digital twin for each truck can track that truck’s parameters (for example, maintenance and driver history) and its dynamic state (location, speed, engine and cargo condition, etc.). The digital twin can analyze telemetry from the truck to update this state information and generate alerts when needed. It can encapsulate analytics code or use machine learning techniques to look for anomalies. Running simultaneously, thousands of digital twins can track all the trucks in a fleet to keep dispatchers informed while reducing their workload.

Applying the digital twin model to real-time analytics expands its range of uses from its traditional home in product lifecycle management and infrastructure tracking to managing time-critical, live systems with many data sources. Examples include preventive maintenance, health-device tracking, logistics, physical and cyber security, IoT for smart cities, ecommerce shopping, financial services, and many others. But how can we integrate real-time analytics with digital twins and ensure high performance combined with straightforward application development?

Message Processing with Azure Digital Twins

Microsoft’s Azure Digital Twins provides a compelling platform for creating  digital twin models with a rich set of features for describing their contents, including properties, components, inheritance, and more. The Azure Digital Twins Explorer GUI tool lets users view digital twin models and instances, as well as their relationships.

Azure digital twins can host dynamic properties that track the current state of physical data sources. Users can create serverless functions using Azure Functions to ingest messages generated by data sources and delivered to digital twins via Azure IoT Hub (or other message hubs). These functions update the properties of Azure digital twins using APIs provided for this purpose. Here’s a redrawn tutorial example that shows how Azure functions can process messages from a thermostat and update both its digital twin and a parent digital twin that models the room in which the thermostat is located. Note that the first Azure function’s update triggers the Azure Event Grid to run a second function that updates the room’s property:

Example of message flow with Azure Digital Twins using serverless functions

The challenge in using serverless functions to process messages and perform real-time analytics is that they add overhead and complexity. By their nature, serverless functions are stateless and must obtain their state from external services; this adds latency. In addition, they are subject to scheduling and authentication overheads on each invocation, and this adds delays that limit scalability. The use of multiple serverless functions and associated mechanisms, such as Event Grid topics and routes, also adds complexity in developing analytics code.

Adding Real-Time Analytics Using In-Memory Computing

Integrating an in-memory computing platform with the Azure Digital Twins infrastructure addresses both of the challenges. This technology runs on a cluster of virtual servers and hosts application-defined software objects in memory for fast access along with a software-based compute engine that can run application-defined methods with extremely low latency. By storing each Azure digital twin instance’s properties in memory and routing incoming messages to an in-memory method for processing, both latency and complexity can be dramatically reduced, and real-time analytics can be scaled to handle thousands or even millions of data sources.

ScaleOut Software’s newly announced Azure Digital Twins Integration does just this. It integrates the ScaleOut Digital Twin Streaming Service™, an in-memory computing platform running on Microsoft Azure (or on premises), with the Azure Digital Twins service to provide real-time streaming analytics. It accelerates message processing using in-memory computing to ensure fast, scalable performance while simultaneously streamlining the programming model.

The ScaleOut Azure Digital Twins Integration creates a component within an Azure Digital Twin model in which it hosts “real-time” properties for each digital twin instance of the model. These properties track dynamic changes to the instance’s physical data source and provide context for real-time analytics.

To implement real-time analytics code, application developers create a message-processing method for an Azure digital twin model. This method can be written in C# or Java, using an intuitive rules-based language, or by configuring machine learning (ML) algorithms implemented by Microsoft’s ML.NET library. It makes use of each instance’s real-time properties, which it stores in a memory-based object called a real-time digital twin, and the in-memory compute engine automatically persists these properties in the Azure digital twin instance.

Here’s a diagram that illustrates how real-time digital twins integrate with Azure digital twins to provide real-time streaming analytics:

Using in-memory computing with real-time digital twins to provide real-time analytics for Azure Digital Twins

This diagram shows how each real-time digital twin instance maintains in-memory properties, which it retrieves when deployed, and automatically persists these properties in its corresponding Azure digital twin instance. The real-time digital twin connects to Azure IoT Hub or other message source to receive and then analyze incoming messages from its corresponding data source. Fast, in-memory processing provides sub-millisecond access to real-time properties and completes message processing with minimal latency. It also avoids repeated authentication delays every time a message is processed by authenticating once with the Azure Digital Twins service at startup.

All real-time analytics performed during message processing can run within a single in-memory method that has full access to the digital twin instance’s properties. This code also can access and update properties in other Azure digital twin instances. These features simplify design by avoiding the need to split functionality across multiple serverless functions and by providing a straightforward, object-oriented design framework with advanced, built-in capabilities, such as ML.

To further accelerate development, ScaleOut provides tools that automatically generate Azure digital twin model definitions for real-time properties. These model definitions can be used either to create new digital twin models or to add a real-time component to an existing model. Users just need to upload the model definitions to the Azure Digital Twins service.

Here’s how the tutorial example for the thermostat would be implemented using ScaleOut’s Azure Digital Twins Integration:

Example of message flow with Azure Digital Twins using in-memory computing with real-time digital twinsNote that the ScaleOut Digital Twins Streaming Service takes responsibility for ingesting messages from Azure IoT Hub and for invoking analytics code for the data source’s incoming messages. Multiple, pipelined connections with Azure IoT Hub ensure high throughput. Also note that the two serverless functions and use of Event Grid have been eliminated since the in-memory method handles both message processing and updates to the parent object (Room 21).

Combining the ScaleOut Digital Twin Streaming Service with Azure Digital Twins gives users the power of in-memory computing for real-time analytics while leveraging the full spectrum of Azure services and tools, as illustrated below for the thermostat example:

Ecosystem of Azure tools available by combining Azure Digital Twins with the ScaleOut Digital Twin Streaming Service

Users can view real-time properties with the Azure Digital Twins Explorer tool and track changes due to message processing. They also can take advantage of Azure’s ecosystem of big data analytics tools like Spark to perform batch processing. ScaleOut’s real-time data aggregation, continuous query, and visualization tools for real-time properties enable second-by-second tracking of live systems that boosts situational awareness for users.

Example of Real-Time Analytics with Azure Digital Twins

Incorporating real-time analytics using ScaleOut’s Azure Digital Twins Integration unlocks a wide array of applications for Azure Digital Twins. For example, here’s how the telematics software application discussed above could be implemented:

Telematics application using real-time analytics with Azure Digital Twins

Each truck has a corresponding Azure digital twin which tracks its properties including a subset of real-time properties held in a component of each instance. When telemetry messages flow in to Azure IoT Hub, they are processed and analyzed by ScaleOut’s in-memory computing platform using a real-time digital twin that holds a truck’s real-time properties in memory for fast access and a message-processing method that analyzes telemetry changes, updates properties, and signals alerts when needed.

Real-time analytics can run ML algorithms that continuously examine telemetry, such as engine parameters, to detect anomalies and signal alerts. Digital twin analytics, combined with data aggregation and visualization powered by the in-memory platform, enable dispatchers to quickly spot emerging issues and take corrective action in a timely manner.

Summing Up

Digital twins offer a powerful means to model and visualize a population of physical devices. Adding real-time analytics to digital twins extends their reach into live, production systems that perform time-sensitive functions. By enabling managers to continuously examine telemetry from thousands or even millions of data sources and immediately identify emerging issues, they can avoid costly problems and capture elusive opportunities.

Azure Digital Twins has emerged as a compelling platform for hosting digital twin models. With the integration of in-memory computing technology using the ScaleOut Digital Twin Streaming Service, Azure Digital Twins gains the ability to analyze incoming telemetry with low latency, high scalability, and a straightforward development model. The combination of these two technologies has the potential to unlock a wide range of important new use cases for digital twins.

The post Unlocking New Capabilities for Azure Digital Twins with Real-Time Analytics appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/featured/unlocking-new-capabilities-for-adts-with-real-time-analytics/feed/ 0
Machine Learning Supercharges Real-Time Digital Twins https://www.scaleoutsoftware.com/featured/machine-learning-supercharges-real-time-digital-twins/ https://www.scaleoutsoftware.com/featured/machine-learning-supercharges-real-time-digital-twins/#respond Tue, 05 Oct 2021 14:00:43 +0000 https://www.scaleoutsoftware.com/?p=8326 When tracking telemetry from a large number of IoT devices, it’s essential to quickly detect when something goes wrong. For example, a fleet of long-haul trucks needs to meet demanding schedules and can’t afford unexpected breakdowns as a fleet manager manages  thousands of trucks on the road. With today’s IoT technology, these trucks can report […]

The post Machine Learning Supercharges Real-Time Digital Twins appeared first on ScaleOut Software.

]]>

When tracking telemetry from a large number of IoT devices, it’s essential to quickly detect when something goes wrong. For example, a fleet of long-haul trucks needs to meet demanding schedules and can’t afford unexpected breakdowns as a fleet manager manages  thousands of trucks on the road. With today’s IoT technology, these trucks can report their engine and cargo status every few seconds to cloud-hosted telematics software. How can this software sift through the flood of incoming messages to identify emerging issues and avoid costly failures? Can the power of machine learning be harnessed to provide predictive analytics that automates the task of finding problems that are otherwise very difficult to detect?

As described in earlier blog posts, real-time digital twins offer a powerful software architecture for tracking and analyzing IoT telemetry from large numbers of data sources. A real-time digital twin is a software component running within a fast, scalable in-memory computing platform, and it hosts analytics code and state information required to track a single data source, like a truck within a fleet. Thousands of real-time digital twins run together to track all of the data sources and enable highly granular real-time analysis of incoming telemetry. By building on the widely used digital twin concept, real-time digital twins simultaneously enhance real-time streaming analytics and simplify application design.

Incorporating machine learning techniques into real-time digital twins takes their power and simplicity to the next level. While analytics code can be written in popular programming languages, such as Java and C#, or even using a simplified rules engine, creating algorithms that ferret out emerging issues hidden within a stream of telemetry still can be challenging. In many cases, the algorithm itself may be unknown because the underlying processes which lead to device failures are not well understood. In these cases, a machine learning (ML) algorithm can be trained to recognize abnormal telemetry patterns by feeding it thousands of historic telemetry messages that have been classified as normal or abnormal. No manual analytics coding is required. After training and testing, the ML algorithm can then be put to work monitoring incoming telemetry and alerting when it observes suspected abnormal telemetry.

To enable ML algorithms to run within real-time digital twins, ScaleOut Software has integrated Microsoft’s popular machine learning library called ML.NET into its Azure-based ScaleOut Digital Twin Streaming Service™. Using the ScaleOut Model Development Tool™ (formerly called the ScaleOut Rules Engine Development Tool), users can select, train, evaluate, deploy, and test ML algorithms within their real-time digital twin models. Once deployed, the ML algorithm runs independently for each data source, examining incoming telemetry within milliseconds after it arrives and logging abnormal events. The real-time digital twin also can be configured to generate alerts and send them to popular alerting providers, such as Splunk, Slack, and Pager Duty. In addition, business rules optionally can be used to further extend real-time analytics.

The following diagram illustrates the use of an ML algorithm to track engine and cargo parameters being monitored by a real-time digital twin hosting an ML algorithm for each truck in a fleet. When abnormal parameters are detected by the ML algorithm (as illustrated by the spike in the telemetry), the real-time digital twin records the incident and sends a message to the alerting provider:

 

Training an ML algorithm to recognize abnormal telemetry just requires supplying a training set of historic data that has been classified as normal or abnormal. Using this training data, the ScaleOut Model Development Tool lets the user train and evaluate up to ten binary classification algorithms supplied by ML.NET using a technique called supervised learning. The user can then select the appropriate trained algorithm to deploy based on metrics for each algorithm generated during training and testing. (The algorithms are tested using a portion of the data supplied for training.)

For example, consider an electric motor which periodically supplies three parameters (temperature, RPM, and voltage) to its real-time digital twin for monitoring by an ML algorithm to detect anomalies and generate alerts when they occur:

A real-time digital twin analyzes multiple telemetry parameters using machine learning.

Training the real-time digital twin’s ML model follows the workflow illustrated below:

Using supervised learning, users train an ML algorithm for deployment in a real-time digital twin.

Here’s a screenshot of the ScaleOut Model Development Tool that shows the training of selected ML.NET algorithms for evaluation by the user:

The ScaleOut Model Development Tool lets users select an ML algorithm after training.

The output of this process is a real-time digital twin model which can be deployed to the streaming service. As each motor reports its telemetry to the streaming service, a unique real-time digital twin “instance” (a software object) is created to track that motor’s telemetry using the ML algorithm.

In addition to supervised learning, ML.NET provides an algorithm (called an adaptive kernel density estimation algorithm) for spike detection, which detects rapid changes in telemetry for a single parameter. The ScaleOut Model Development Tool lets users add spike detection for selected parameters using this algorithm. In addition, it is often useful to detect unusual but subtle changes in a parameter’s telemetry over time. For example, if the temperature for an electric motor is expected to remain constant, it would be useful to detect a slow rise in temperature that might otherwise go unobserved. To address this need, the tool lets users make use of a ScaleOut-developed, linear regression algorithm that detects and reports inflection points in the telemetry for a single parameter. These two techniques for tracking changes in a telemetry parameter are illustrated below:

Real-time digital twins can perform spike and trend detection for telemetry parameters.

Summing Up

Machine learning provides important real-time insights that enhance situational awareness and enable fast, effective responses. They often can provide useful analytics for complex datasets that cannot be analyzed with hand-coded algorithms. Their usefulness and rate of adoption is quickly growing. Using the ScaleOut Model Development Tool, real-time digital twins now can easily be enhanced to automatically analyze incoming telemetry messages with machine learning techniques that take full advantage of Microsoft’s ML.NET library. The integration of machine learning with real-time digital twins enables thousands of data streams to be automatically and independently analyzed in real-time with fast, scalable performance. Best of all, no coding is required, enabling fast, easy model development. By combining ML with real-time digital twins, the ScaleOut Digital Twin Streaming Service adds important new capabilities for real-time streaming analytics that supercharge the Azure IoT ecosystem.

Read more about the ScaleOut Model Development Tool.

The post Machine Learning Supercharges Real-Time Digital Twins appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/featured/machine-learning-supercharges-real-time-digital-twins/feed/ 0
The Need for Real-Time Device Tracking https://www.scaleoutsoftware.com/featured/the-need-for-real-time-device-tracking/ https://www.scaleoutsoftware.com/featured/the-need-for-real-time-device-tracking/#respond Mon, 19 Jul 2021 21:49:42 +0000 https://www.scaleoutsoftware.com/?p=8038 Real-Time Device Tracking with In-Memory Computing Can Fill an Important Gap in Today’s Streaming Analytics Platforms   We are increasingly surrounded by intelligent IoT devices, which have become an essential part of our lives and an integral component of business and industrial infrastructures. Smart watches report biometrics like blood pressure and heartrate; sensor hubs on […]

The post The Need for Real-Time Device Tracking appeared first on ScaleOut Software.

]]>
Medical, logistics, cyber-security, and telematics are among the applications for real-time device tracking in IoT.

Real-Time Device Tracking with In-Memory Computing Can Fill an Important Gap in Today’s Streaming Analytics Platforms

 

We are increasingly surrounded by intelligent IoT devices, which have become an essential part of our lives and an integral component of business and industrial infrastructures. Smart watches report biometrics like blood pressure and heartrate; sensor hubs on long-haul trucks and delivery vehicles report telemetry about location, engine and cargo health, and driver behavior; sensors in smart cities report traffic flow and unusual sounds; card-key access devices in companies track entries and exits within businesses and factories; cyber agents probe for unusual behavior in large network infrastructures. The list goes on.

The Limitations of Today’s Streaming Analytics

How are we managing the torrent of telemetry that flows into analytics systems from these devices? Today’s streaming analytics architectures are not equipped to make sense of this rapidly changing information and react to it as it arrives. The best they can usually do in real-time using general purpose tools is to filter and look for patterns of interest. The heavy lifting is deferred to the back office. The following diagram illustrates a typical workflow. Incoming data is saved into data storage (historian database or log store) for query by operational managers who must attempt to find the highest priority issues that require their attention. This data is also periodically uploaded to a data lake for offline batch analysis that calculates key statistics and looks for big trends that can help optimize operations.

Conventional streaming analytics processes messages offline with query and big data.

What’s missing in this picture? This architecture does not apply computing resources to track the myriad data sources sending telemetry and continuously look for issues and opportunities that need immediate responses. For example, if a health tracking device indicates that a specific person with known health condition and medications is likely to have an impending medical issue, this person needs to be alerted within seconds. If temperature-sensitive cargo in a long haul truck is about to be impacted by an erratic refrigeration system with known erratic behavior and repair history, the driver needs to be informed immediately. If a cyber network agent has observed an unusual pattern of failed login attempts, it needs to alert downstream network nodes (servers and routers) to block the kill chain in a potential attack.

A New Approach: Real-Time Device Tracking

To address these challenges and countless others like them, we need autonomous, deep introspection on incoming data as it arrives and immediate responses. The technology that can do this is called in-memory computing. What makes in-memory computing unique and powerful is its two-fold ability to host fast-changing data in memory and run analytics code within a few milliseconds after new data arrives. It can do this simultaneously for millions of devices. Unlike manual or automatic log queries, in-memory computing can continuously run analytics code on all incoming data and instantly find issues. And it can maintain contextual information about every data source (like the medical history of a device wearer or the maintenance history of a refrigeration system) and keep it immediately at hand to enhance the analysis. While offline, big data analytics can provide deep introspection, they produce answers in minutes or hours instead of milliseconds, so they can’t match the timeliness of in-memory computing on live data.

The following diagram illustrates the addition of real-time device tracking with in-memory computing to a conventional analytics system.  Note that it runs alongside existing components. It adds the ability to continuously examine incoming telemetry and generate both feedback to the data sources (usually, devices) and alerts for personnel in milliseconds:

Real-time device tracking can be seamlessly added to conventional streaming analytics.

In-Memory Computing with Real-Time Digital Twins

Let’s take a closer look at today’s conventional streaming analytics architectures, which can be hosted in the cloud or on-premises. As shown in the following diagram, a typical analytics system receives messages from a message hub, such as Kafka, which buffers incoming messages from the data sources until they can be processed. Most analytics systems have event dashboards and perform rudimentary real-time processing, which may include filtering an aggregated incoming message stream and extracting patterns of interest. These real-time components then deliver messages to data storage, which can include a historian database for logging and query and a data lake for offline, batch processing using big data tools such as Spark:

A closer look at conventional streaming analytics which just does filtering and feature extraction in real time.

Conventional streaming analytics systems run either manual queries or automated, log-based queries to identify actionable events. Since big data analyses can take minutes or hours to run, they are typically used to look for big trends, like the fuel efficiency and on-time delivery rate of a trucking fleet, instead of emerging issues that need immediate attention. These limitations create an opportunity for real-time device tracking to fill the gap.

As shown in the following diagram, an in-memory computing system performing real-time device tracking can run alongside the other components of a conventional streaming analytics solution and provide autonomous introspection of the data streams from each device. Hosted on a cluster of physical or virtual servers, it maintains memory-based state information about the history and dynamically evolving state of every data source. As messages flow in, the in-memory compute cluster examines and analyzes them separately for each data source using application-defined analytics code. This code makes use of the device’s state information to help identify emerging issues and trigger alerts or feedback to the device. In-memory computing has the speed and scalability needed to generate responses within milliseconds, and it can evaluate and report aggregate trends every few seconds.

Real-time device tracking uses digital twins running in an in-memory compute cluster.

Because in-memory computing can store contextual data and process messages separately for each data source, it can organize application code using a software-based digital twin for each device, as illustrated in the diagram above. Instead of using the digital twin concept to model the inner workings of the device, a real-time digital twin tracks the device’s evolving state coupled with its parameters and history to detect and predict issues needing immediate attention. This provides an object-oriented mechanism that simplifies the construction of real-time application code that needs to evaluate incoming messages in the context of the device’s dynamic state. For example, it enables a medical application to determine the importance of a change in heart rate for a device wearer based on the individual’s current activity, age, medications, and medical history.

Summing Up

The complex web of communicating devices that surrounds us needs intelligent, real-time device tracking to extract its full benefits. Conventional streaming analytics architectures have not kept up with the growing demands of IoT. With its combination of fast data storage, low-latency processing and ease of use, in-memory computing can fill the gap while complementing the benefits provided by historian databases and data lakes. It can add the immediate feedback that IoT applications need and boost situational awareness to a new level, finally enabling IoT to deliver on its promises.

 

 

 

 

The post The Need for Real-Time Device Tracking appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/featured/the-need-for-real-time-device-tracking/feed/ 0
Adding New Capabilities for Real-Time Analytics to Azure IoT https://www.scaleoutsoftware.com/featured/adding-new-capabilities-for-real-time-analytics-to-azure-iot/ https://www.scaleoutsoftware.com/featured/adding-new-capabilities-for-real-time-analytics-to-azure-iot/#respond Wed, 14 Jul 2021 23:25:22 +0000 https://www.scaleoutsoftware.com/?p=8008   The population of intelligent IoT devices is exploding, and they are generating more telemetry than ever. Whether it’s health-tracking watches, long-haul trucks, or security sensors, extracting value from these devices requires streaming analytics that can quickly make sense of the telemetry and intelligently react to handle an emerging issue or capture a new opportunity. […]

The post Adding New Capabilities for Real-Time Analytics to Azure IoT appeared first on ScaleOut Software.

]]>
 

Expand the Possibilities for Azure IoT Hub with Real-Time Digital Twins

The population of intelligent IoT devices is exploding, and they are generating more telemetry than ever. Whether it’s health-tracking watches, long-haul trucks, or security sensors, extracting value from these devices requires streaming analytics that can quickly make sense of the telemetry and intelligently react to handle an emerging issue or capture a new opportunity.

The Microsoft Azure IoT ecosystem offers a rich set of capabilities for processing IoT telemetry, from its arrival in the cloud through its storage in databases and data lakes. Acting as a switchboard for incoming and outgoing messages, Azure IoT Hub forms the core of these capabilities. It provides support for a range of message protocols, buffering, and scalable message distribution to downstream services. These services include:

  • Azure Event Grid for routing incoming events to a variety of handlers, including serverless functions, webhooks, storage queues, and other services
  • Azure IoT Central for managing devices, visualizing incoming telemetry on a dashboard, triggering alerts, and integrating with line-of-business applications
  • Azure Stream Analytics for simultaneously analyzing aggregated telemetry streams using extended SQL queries to extract patterns that can be fed to workflows, including alerts, serverless functions, and data storage with offline processing
  • Azure Time Series Insights for storing time-series data and then exploring, modeling, and querying it to gain insights, such as identifying anomalies and trends, with a rich set of analytics tools
  • Azure Digital Twins for creating a graphical representation of the assets within an organization using the Digital Twin Definition Language, processing events, and visualizing entity graphs to display and query status

While Azure IoT offers a wide variety of services, it focuses on visualizing entities and events, extracting insights from telemetry streams with queries, and migrating events to storage for more intensive offline analysis. What’s missing is continuous, real-time introspection on the dynamic state of IoT devices to predict and immediately react to significant changes in their state. These capabilities are vitally important to extract the full potential of real-time intelligent monitoring.

For example, here are some scenarios in which stateful, real-time introspection can create important insights. Telemetry from each truck in a fleet of thousands can provide numerous parameters about the driver (such as repeated lateral accelerations at the end of a long shift) that might indicate the need for a dispatcher to intervene. A health tracking device might indicate a combination of signals (blood pressure, blood oxygen, heart rate, etc.) that indicate an emerging medical issue for an individual with a known medical history and current medications. A security sensor in a key-card access system might indicate an unusual pattern of building entries for an employee who has given notice of resignation.

In all of these examples, the event-processing system needs to be able to independently analyze events for each data source (IoT device) within milliseconds, and it needs immediate access to dynamic, contextual information about the data source that it can use to perform real-time predictive analytics. In short, what’s needed is a scalable, in-memory computing platform connected directly to Azure IoT Hub which can ingest and process event messages separately for each data source using memory-based state information maintained for that data source.

The ScaleOut Digital Twin Streaming Service™ provides precisely these capabilities. It does this by leveraging the digital twin concept (not to be confused with Azure Digital Twins) to create an in-memory software object for every data source that it is tracking. This object, called a real-time digital twin, holds dynamic state information about the data source and is made available to the application’s event handling code, which runs within 1-2 milliseconds whenever an incoming event is received. Application developers write event handling code in C#, Java, JavaScript, or using a rules engine; this code encapsulates application logic, such as a predictive analytics or machine learning algorithm. Once the real-time digital twin’s model (that is, its state data and event handling code) has been created, the developer can use an intuitive UI to deploy it to the streaming service and connect to Azure IoT Hub.

As shown in the following diagram, ScaleOut’s streaming service connects to Azure IoT Hub, runs alongside other Azure IoT services, and provides unique capabilities that enhance the overall Azure IoT ecosystem:

ScaleOut Digital Twin Streaming Service in the Azure IoT ecosystem

ScaleOut’s streaming service handles all the details of message delivery, data management, code orchestration, and scalable execution. This makes developing streaming analytics code for real-time digital twins fast and easy. The application developer just focuses on writing a single method to process incoming messages, run application-specific analytics, update state information about the data source, and generate alerts as needed. The optional rules engine further simplifies the development process with a UI for specifying state data and a sequential list of business rules for describing analytics code.

How are the streaming service’s real-time digital twins different from Azure digital twins? Both services leverage the digital twin concept by providing a software entity for each IoT device that can track the parameters and state of the device. What’s different is the streaming service’s focus on real-time analytics and its use of an in-memory computing platform integrated with Azure IoT Hub to ensure the lowest possible latency and high scalability. Azure digital twins serve a different purpose. They are intended to maintain a graphical representation of an organization’s entities for management and querying current status; they are not designed to implement real-time analytics using application-defined algorithms.

The following diagram illustrates the integration of ScaleOut’s streaming service with Azure IoT Hub to provide fast, scalable event handling with low-latency access to memory-based state for all data sources. It shows how real-time digital twins are distributed across multiple virtual servers organized into an in-memory computing cluster connected to Azure IoT Hub. The streaming service uses multiple message queues in Azure IoT Hub to scale message delivery and event processing:

Connecting Azure IoT Hub to the ScaleOut Digital Twin Streaming Service

As IoT devices proliferate and become more intelligent, it’s vital that our cloud-based event-processing systems be able to perform continuous and deep introspection in real time. This enables applications to react quickly, effectively, and autonomously to emerging challenges, such as to security threats and safety issues, as well as to new opportunities, such as real-time ecommerce recommendations. While there is an essential role for query and offline analytics to optimize IoT services, the need for highly granular, real-time analytics continues to grow. ScaleOut’s Digital Twin Streaming Service is designed to meet this need as an integral part of the Azure IoT ecosystem.

To learn more about using the ScaleOut’s Digital Twin Streaming Service in the Microsoft Azure cloud, visit the Azure Marketplace here.

The post Adding New Capabilities for Real-Time Analytics to Azure IoT appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/featured/adding-new-capabilities-for-real-time-analytics-to-azure-iot/feed/ 0
Deploying Real-Time Digital Twins On Premises with ScaleOut StreamServer DT https://www.scaleoutsoftware.com/featured/deploying-streamserver-dt/ https://www.scaleoutsoftware.com/featured/deploying-streamserver-dt/#respond Tue, 06 Apr 2021 13:00:47 +0000 https://www.scaleoutsoftware.com/?p=7607 With the ScaleOut Digital Twin Streaming Service™, an Azure-hosted cloud service, ScaleOut Software introduced breakthrough capabilities for streaming analytics using the real-time digital twin concept. This new software model enables applications to easily analyze telemetry from individual data sources in 1-3 milliseconds while maintaining state information about data sources that deepens introspection. It also provides […]

The post Deploying Real-Time Digital Twins On Premises with ScaleOut StreamServer DT appeared first on ScaleOut Software.

]]>

With the ScaleOut Digital Twin Streaming Service™, an Azure-hosted cloud service, ScaleOut Software introduced breakthrough capabilities for streaming analytics using the real-time digital twin concept. This new software model enables applications to easily analyze telemetry from individual data sources in 1-3 milliseconds while maintaining state information about data sources that deepens introspection. It also provides a basis for applications to create key status information that the streaming platform aggregates every few seconds to maximize situational awareness. Because it runs on a scalable, highly available in-memory computing platform, it can do all this simultaneously for hundreds of thousands or even millions of data sources.

The unique capabilities of real-time digital twins can provide important advances for numerous applications, including security, fleet telematics, IoT, smart cities, healthcare, and financial services. These applications are all characterized by numerous data sources which generate telemetry that must be simultaneously tracked and analyzed, while maintaining overall situational awareness that immediately highlights problems of concern an/or opportunities of interest. For example, consider some of the new capabilities that real-time digital twins can provide in fleet telematics and vaccine distribution during COVID-19.

To address security requirements or the need for tight integration with existing infrastructure, many organizations need to host their streaming analytics platform on-premises. Scaleout StreamServer® DT was created to meet this need. It combines the scalable, battle-tested in-memory data grid that powers ScaleOut StreamServer with the graphical user interface and visualization features of the cloud service in a unified, on-premises deployment. This gives users all of the capabilities of the ScaleOut Digital Twin Streaming Service with complete infrastructure control.

As illustrated in the following diagram, ScaleOut StreamServer DT installs its management console on a standalone server that connects to ScaleOut StreamServer’s in-memory data grid. This console hosts the graphical user interface that is securely accessed by remote workstations within an organization. It also deploys real-time digital twin models to the in-memory data grid, which hosts instances of digital twins (one per data source) and runs application-defined code to process incoming messages. Message are delivered to the grid using messaging hubs, such as Azure IoT Hub, AWS IoT Core, Kafka, a built-in REST service, or directly using APIs.

Deployment diagram for ScaleOut StreamServer DT

The management console installs as a set of Docker containers on the management server. This simplifies the installation process and ensures portability across operating systems. Once installed, users can create accounts to control access to the console, and all connections are secured using SSL. The results of aggregate analytics and queries performed within the in-memory data grid can then be accessed and visualized on workstations running throughout an organization.

Because ScaleOut’s in-memory data grid runs in an organization’s data center and avoids the requirement to use a cloud-hosted message hub or REST service, incoming messages from data sources can be processed with minimum latency. In addition, application code running in real-time digital twins can access local resources, such as databases and alerting systems, with the best possible performance and security. Use of dedicated computing resources for the in-memory data grid delivers the highest possible throughput for message processing and real-time analytics.

While cloud hosting of streaming analytics as a SaaS (software-as-a-service) offering creates clear advantages in reducing capital costs and providing access to highly elastic computing resources, it may not be suitable for organizations which need to maintain full control of their infrastructures to address security and performance requirements. ScaleOut StreamServer DT was designed to meet these needs and deliver the important, unique benefits of streaming analytics using real-time digital twins to these organizations.

The post Deploying Real-Time Digital Twins On Premises with ScaleOut StreamServer DT appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/featured/deploying-streamserver-dt/feed/ 0
Use Digital Twins for the Next Generation in Telematics https://www.scaleoutsoftware.com/technology/use-digital-twins-for-the-next-generation-in-telematics/ https://www.scaleoutsoftware.com/technology/use-digital-twins-for-the-next-generation-in-telematics/#comments Tue, 24 Nov 2020 20:34:26 +0000 https://www.scaleoutsoftware.com/?p=7183 Real-Time Digital Twins Can Add Important New Capabilities to Telematics Systems and Eliminate Scalability Bottlenecks   Rapid advances in the telematics industry have dramatically boosted the efficiency of vehicle fleets and have found wide ranging applications from long haul transport to usage-based insurance. Incoming telemetry from a large fleet of vehicles provides a wealth of […]

The post Use Digital Twins for the Next Generation in Telematics appeared first on ScaleOut Software.

]]>

Real-Time Digital Twins Can Add Important New Capabilities to Telematics Systems and Eliminate Scalability Bottlenecks

 

Rapid advances in the telematics industry have dramatically boosted the efficiency of vehicle fleets and have found wide ranging applications from long haul transport to usage-based insurance. Incoming telemetry from a large fleet of vehicles provides a wealth of information that can help streamline operations and maximize productivity. However, telematics architectures face challenges in responding to telemetry in real time. Competitive pressures should spark innovation in this area, and real-time digital twins can help.

Current Telematics Architecture

The volume of incoming telemetry challenges current telematics systems to keep up and quickly make sense of all the data. Here’s a typical telematics architecture for processing telemetry from a fleet of trucks:

Each truck today has a microprocessor-based sensor hub which collects key telemetry, such as vehicle speed and acceleration, engine parameters, trailer parameters, and more. It sends messages over the cell network to the telematics system, which uses its compute servers (that is, web and application servers) to store incoming messages as snapshots in an in-memory data grid, also known as a distributed cache.  Every few seconds, the application servers collect batches of snapshots and write them to the database where they can be queried by dispatchers managing the fleet. At the same time, telemetry snapshots are stored in a data lake, such as HDFS, for offline batch analysis and visualization using big data tools like Spark. The results of batch analysis are typically produced after an hour’s delay or more. Lastly, all telemetry is archived for future use (not shown here).

This telematics architecture has evolved to handle ever increasing message rates (often reaching 2K messages per second), make up-to-the-minute information available to dispatchers, and feed offline analytics. Using a database, dispatchers can query raw telemetry to determine the information they need to manage the fleet in real time. This enables them to answer questions such as:

  • “Where is truck 7563?”
  • “How long has the driver been on the road?”
  • “Which trucks have abnormally high oil temperature?”

Offline analytics can mine the telemetry for longer term statistics that help managers assess the fleet’s overall performance, such as the average length of delivery or routing delays, the fleet’s change in fuel efficiency, the number of drivers exceeding their allowed shift times, and the number and type of mechanical issues. These statistics help pinpoint areas where dispatchers and other personnel can make strategic improvements.

Challenges for Current Architectures

There are three key limitations in this telematics architecture which impact its ability to provide managers with the best possible situational awareness. First, incoming telemetry from trucks in the fleet arrives too fast to be analyzed immediately. The architecture collects messages in snapshots but leaves it to human dispatchers to digest this raw information by querying a database. What if the system could separately track incoming telemetry for each truck, look for changes based on contextual information, and then alert dispatchers when problems were identified? For example, the system could perform continuous predictive analytics on the engine’s parameters with knowledge of the engine’s maintenance history and signal if an impending failure was detected. Likewise, it could watch for hazardous driving with information about the driver’s record and medical condition. Having the system continuously introspect on the telemetry for each truck would enable the dispatcher to spot problems and intervene more quickly and effectively.

A second key limitation is the lack of real-time aggregate analysis. Since this analysis must be performed offline in batch jobs, it cannot respond to immediate issues and is restricted to assessing overall fleet performance. What if the real-time telemetry tracking for each truck could be aggregated within seconds to spot emerging issues that affect many trucks and require a strategic response? These issues could include:

  • Unexpected delays in a region due to highway blockages or weather that indicate the need to inform or reroute several trucks
  • An unusually large number of soon-to-be timed-out drivers or impending maintenance issues which require making immediate schedule changes to avoid downtime
  • Congregated drivers who are impacting on-time deliveries

The current telematics architecture also has inherent scalability issues in the form of network bottlenecks. Because all telemetry is stored in the in-memory data grid and accessed by a separate farm of compute servers, the network between the grid and the server farm can quickly bottleneck as the incoming message rate increases. As the fleet size grows and the message rate per truck increases from once per minute to once per second, the telematics system may not be able to handle the additional incoming telemetry.

Solution: Real-Time Digital Twins

A new software architecture for streaming analytics based on the concept of real-time digital twins can address these challenges and add significant capabilities to telematics systems. This new, object-oriented software technique provides a memory-based orchestration framework for tracking and analyzing telemetry from each data source. It comprises message-processing code and state variables which host dynamically evolving contextual information about the data source. For example, the real-time digital twin for a truck could look like this:

Instead of just snapshotting incoming telemetry, real-time digital twins for every data source immediately analyze it, update their state information about the truck’s condition, and send out alerts or commands to the truck or to managers as necessary. For example, they can track engine telemetry with knowledge of the engine’s known issues and maintenance history. They can track position, speed, and acceleration with knowledge of the route, schedule, and driver (allowed time left, driving record, etc.). Message-processing code can incorporate a rules engine or machine learning to amplify their capabilities.

Real-time digital twins digest raw telemetry and enable intelligent alerting in the moment that assists both drivers and dispatchers in surfacing issues that need immediate attention. They are much easier to develop than typical streaming analytics applications, which have to sift through the telemetry from all data sources to pick out patterns of interest and which lack contextual information to guide them. Because they are implemented using in-memory computing techniques, real-time digital twins are fast (typically responding to messages in a few milliseconds) and transparently scalable to handle hundreds of thousands of data sources and message rates exceeding 100K messages/second.

Here’s a depiction of real-time digital twins running within an in-memory data grid in a telematics architecture:

In addition to fitting within an overall architecture that includes database query and offline analytics, real-time digital twins enable built-in aggregate analytics and visualization. They provide curated state information derived from incoming telemetry that can be continuously aggregated and visualized to boost situational awareness for managers, as illustrated below. This opens up an important new opportunity to aggregate performance indicators needed in real time, such as emerging road delays by region or impending scheduling issues due to timed out drivers, that can be acted upon while new problems are still nascent. Real-time aggregate analytics add significant new capabilities to telematics systems.

Summing Up

While telematics systems currently provide a comprehensive feature set for managing fleets, they lack the important ability to track and analyze telemetry from each vehicle in real time and then aggregate derived information to maintain continuous situational awareness for the fleet. Real-time digital twins can address these shortcomings with a powerful, fast, easy to develop, and highly scalable software architecture. This new software technique has the potential to make a major impact on the telematics industry.

To learn more about real-time digital twins in action, take a look at ScaleOut Software’s streaming service for hosting real-time digital twins in the cloud or on-premises here.

 

The post Use Digital Twins for the Next Generation in Telematics appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/technology/use-digital-twins-for-the-next-generation-in-telematics/feed/ 1
ScaleOut Discusses Contact Tracing in The Record https://www.scaleoutsoftware.com/whats-new/scaleout-discusses-contact-tracing-in-the-record/ https://www.scaleoutsoftware.com/whats-new/scaleout-discusses-contact-tracing-in-the-record/#respond Thu, 01 Oct 2020 21:34:46 +0000 https://www.scaleoutsoftware.com/?p=6976 Learn about a novel approach to contact tracing for companies in the latest edition of The Record magazine. Founder and CEO William Bain explains how real-time digital twins running in the Microsoft Azure cloud help make it possible in a new Viewpoint article. Also read our Partner Perspective in the same issue, which explains how […]

The post ScaleOut Discusses Contact Tracing in The Record appeared first on ScaleOut Software.

]]>
Learn about a novel approach to contact tracing for companies in the latest edition of The Record magazine. Founder and CEO William Bain explains how real-time digital twins running in the Microsoft Azure cloud help make it possible in a new Viewpoint article.

Also read our Partner Perspective in the same issue, which explains how the Microsoft Azure cloud provides a powerful platform for hosting the ScaleOut Digital Twin Streaming Service™ and ensures high performance across a wide range of applications.

 

The post ScaleOut Discusses Contact Tracing in The Record appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/whats-new/scaleout-discusses-contact-tracing-in-the-record/feed/ 0
Founder & CEO William Bain Discusses Real-Time Digital Twins with TechStrong TV https://www.scaleoutsoftware.com/whats-new/founder-ceo-william-bain-discusses-real-time-digital-twins-with-techstrongtv/ https://www.scaleoutsoftware.com/whats-new/founder-ceo-william-bain-discusses-real-time-digital-twins-with-techstrongtv/#respond Wed, 16 Sep 2020 18:09:58 +0000 https://www.scaleoutsoftware.com/?p=6899 Check out this video interview by Mitch Ashley at TechStrongTV. ScaleOut Software’s founder & CEO William Bain and Mitch engage in a lively half-hour discussion about the benefits of real-time digital twins and other aspects of in-memory computing. They discuss a variety of applications for real-time digital twins, including ScaleOut’s new demonstration contact tracing application. […]

The post Founder & CEO William Bain Discusses Real-Time Digital Twins with TechStrong TV appeared first on ScaleOut Software.

]]>
Check out this video interview by Mitch Ashley at TechStrongTV. ScaleOut Software’s founder & CEO William Bain and Mitch engage in a lively half-hour discussion about the benefits of real-time digital twins and other aspects of in-memory computing. They discuss a variety of applications for real-time digital twins, including ScaleOut’s new demonstration contact tracing application.

Watch the video here.

 

The post Founder & CEO William Bain Discusses Real-Time Digital Twins with TechStrong TV appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/whats-new/founder-ceo-william-bain-discusses-real-time-digital-twins-with-techstrongtv/feed/ 0
Using Real-Time Digital Twins for Corporate Contact Tracing https://www.scaleoutsoftware.com/featured/using-real-time-digital-twins-for-corporate-contact-tracing/ https://www.scaleoutsoftware.com/featured/using-real-time-digital-twins-for-corporate-contact-tracing/#respond Tue, 25 Aug 2020 13:00:23 +0000 https://www.scaleoutsoftware.com/?p=6822 A Demo Application Shows How Companies Can Track COVID-19 Contacts Within Companies   Until a COVID-19 vaccine is widely available, getting back to work means keeping a close watch for outbreaks and quickly containing them when they occur. While the prospects for accomplishing this within large companies seem daunting, tracking contacts between employees may be […]

The post Using Real-Time Digital Twins for Corporate Contact Tracing appeared first on ScaleOut Software.

]]>
A Demo Application Shows How Companies Can Track COVID-19 Contacts Within Companies

 

Until a COVID-19 vaccine is widely available, getting back to work means keeping a close watch for outbreaks and quickly containing them when they occur. While the prospects for accomplishing this within large companies seem daunting, tracking contacts between employees may be much easier than for the public at large. This blog post explains how a software application built with a new software construct called real-time digital twins makes this possible.

Tracking Employees Using Real-Time Digital Twins

In an earlier blog post, we saw how real-time digital twins running in the ScaleOut Digital Twin Streaming Service™ can be used to track employees within a large company using a technique called “voluntary self-tracing.” In this post, we’ll take a closer look at its implementation in a demo application created by ScaleOut Software. We’ll also look at a companion mobile app that allows employees to log contacts with colleagues outside their immediate teams and to notify the company and their contacts if they test positive for COVID-19.

The demo application creates a memory-based real-time digital twin for each employee. Using information from the company’s organizational database, it populates each twin with the employee’s ID, team ID, department type, and location. The twin also keeps a list of the employee’s contacts within the organization (as well as community contacts, discussed below). This allows immediate colleagues and their contacts to be notified if an employee tests positive. The following diagram illustrates an employee’s real-time digital twin and the state data it holds; details about the contact tracing code are explained below:

The twin automatically populates its contact list with the other members of the employee’s team, based on the expectation that team members are in daily contact. Using the mobile app, employees can log one-time and recurring contacts with colleagues in other teams, possibly at different office locations. In addition, they can log contacts outside the company, such as taxi rides, airline flights, and meals at restaurants, so that community members can be notified if an employee was exposed to COVID-19.

An employee can use the mobile app to notify their real-time digital twin of a positive test for COVID-19. Code running in the twin then sends messages to the real-time digital twins for all contacts in the employee’s list. These twins in turn send messages to their contacts, and so on, until the twins for all contacts have been notified. (The algorithm avoids unnecessary messages to team members and circular paths among twins.) The twin then sends a push notification to each affected employee through the mobile app, alerting them to the possible exposure and the number of intermediate contacts between themselves and the infected person. Because real-time digital twins are hosted in memory, all of this happens within seconds, enabling affected employees to immediately self-quarantine and obtain COVID-19 tests.

Here’s an illustration of the chain of contacts originating with an employee who reports testing positive. (Note that the outbound notifications from the twins to the employees’ mobile devices are not shown here.)

What’s in the Real-Time Digital Twin?

As illustrated in the first diagram, each real-time digital twin hosts two components, state data and a message-processing method. These are defined by the contact tracing application and can be written in C#, Java, or JavaScript. (C# was used for the demo application.) The state data is unique for each employee and contains the employee’s information and contact list, along with useful statistics, such as how often the employee has been alerted about a possible exposure. The message-processing method’s code is shared by all twins. It receives messages from the mobile app or from other twins (each corresponding to a single employee) and uses application-defined code to process these messages.

Messages from the mobile app can request to add or remove a contact from the list. For new contacts, they include parameters such as the employee ID of the contact and whether the contact will be recurring. (Users also can record contacts using calendar events.) Messages from the mobile app can also request the current contact list for display, signal that the employee has tested positive or negative, and request current notifications. Messages from other real-time digital twins signal that the corresponding employees have been exposed and provide additional information, such as the number of intermediate contacts and the location of the initial employee who tested positive.

The application’s message-processing code responds to these messages and implements the spanning-tree notification algorithm that alerts other twins on the contact list. The streaming service handles the rest, namely the details of message delivery, retrieval and updating of state information, and managing the execution platform.

Using the Mobile App

The following animated diagram shows how an employee can add a contact with a company colleague outside of their immediate team or with a community contact during business travel (left screenshot). If the employee tests positive, the employee can use the mobile app to report this to the company (middle screenshot). All employees are then notified using the mobile app, as shown in the right screenshot. Community contacts are reported to managers who communicate with outside points of contact, such as airlines, taxi companies, and restaurants.

 

Using Aggregate Statistics to Spot Outbreaks

The streaming service has the built-in capability to aggregate state data from all real-time digital twins. The service then displays the results in charts which are recalculated every few seconds. These charts enable managers to identify emerging issues, such as an outbreak within a specific department or site. With this information, they can take immediate steps to contain the outbreak and minimize the number of affected employees.

To illustrate the value of aggregate statistics in boosting situational awareness, consider a hypothetical company with 30,000 employees and offices in several states across the U.S. Suppose an employee at the Texas site suddenly tests positive. This could be immediately alerted to managers with the following chart generated and continuously updated by the streaming service, which shows all employees who have tested positive:

Within a few seconds, the real-time digital twins notify all points of contact. Updates to state data are immediately aggregated in another chart that shows the sites where employees have been notified of a positive contact and the number of employees affected at each site:

This chart shows that about 140 employees in three states were notified and possibly exposed directly or indirectly. All of these employees are then immediately quarantined to contain the possible spread of COVID-19. After an investigation by company managers, it is determined that the employee had business travel to Arizona and met with a team that subsequently had business travel to California. Instead of taking hours or days to uncover the scope of a COVID-19 exposure, contact tracing using real-time digital twins alerts managers within seconds.

The real-time digital twins can collect additional useful statistics for visualization by the streaming service. Another chart can show the average number of intermediate contacts for all notified employees, which is an indication of how widely employees have been interacting across teams. If this becomes an issue (as it is in the above example), managers can implement policies to further isolate teams. As shown below, a chart can also show the number of notified employees by department so that managers can determine whether certain departments, such as retail outlets, need stricter policies to limit exposure to COVID-19 from outside contacts.

The Benefits of an Integrated Streaming Service

This contact tracing application demonstrates the power of real-time digital twins to enable fast application development with compelling benefits. Because the amount of application code is small, real-time digital twins can be quickly written and tested. (See a recent blog post which describes how to simplify debugging and testing using a mock environment prior to deployment in the cloud.) They also can be easily modified and updated.

The ScaleOut Digital Twin Streaming Service provides the execution platform so that the application code does not have to deal with message distribution, state saving, performance scaling, and high availability. It also includes support for real-time aggregate analytics and visualization integrated with the real-time digital twin model to maximize ease of use.

Compare this approach to the complexity of building out an application server farm, database, analytics application, and visualization to accomplish the same goals at higher cost and lower performance. Cobbling together these diverse technologies would require several skill sets, lengthy development time, and higher operational costs.

Summing Up

This demo contact tracing application was designed to show how companies can take advantage of their organizational structures to track contacts among employees and quickly notify all affected employees when an individual tests positive for COVID-19. By responding quickly to an exposure with immediate, comprehensive information about its extent within the company (and with community contacts), managers can limit the exposure’s impact. The application also shows how the real-time digital twin model enables a quick, agile implementation which can be easily adapted to the specific needs of a wide range of companies.

Please contact us at ScaleOut Software to learn more about this demo application for limiting the impact of COVID-19 and other ways real-time digital twins can help your company monitor and respond to fast-changing events.

 

The post Using Real-Time Digital Twins for Corporate Contact Tracing appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/featured/using-real-time-digital-twins-for-corporate-contact-tracing/feed/ 0
Developing Real-Time Digital Twins for Cloud Deployment https://www.scaleoutsoftware.com/featured/developing-real-time-digital-twins-for-cloud-deployment/ https://www.scaleoutsoftware.com/featured/developing-real-time-digital-twins-for-cloud-deployment/#respond Fri, 21 Aug 2020 00:22:25 +0000 https://www.scaleoutsoftware.com/?p=6809 Simplifying the Development Process with Mock Environments   This blog post explains how a new software construct called a real-time digital twin running in a cloud-hosted service can create a breakthrough for streaming analytics. Development is fast and straightforward using standard object-oriented techniques, and the test/debug cycle is kept short by making use of a […]

The post Developing Real-Time Digital Twins for Cloud Deployment appeared first on ScaleOut Software.

]]>
Simplifying the Development Process with Mock Environments

 

This blog post explains how a new software construct called a real-time digital twin running in a cloud-hosted service can create a breakthrough for streaming analytics. Development is fast and straightforward using standard object-oriented techniques, and the test/debug cycle is kept short by making use of a mock environment running on the developer’s workstation.

What Are Real-Time Digital Twins?

The ScaleOut Digital Twin Streaming Service offers an exciting new approach to streaming analytics in applications that track large numbers of data sources and need to maximize responsiveness and situational awareness. Examples include tracking a fleet of trucks, analyzing large numbers of banking transactions for potential fraud, managing logistics in the delivery of supplies after a disaster or during a pandemic, recommending products to ecommerce shoppers, and much more.

The key to meeting these challenges is to process incoming telemetry in the context of unique state information maintained for each individual data source. This allows application code to introspect on the dynamic behavior of each data source, maintain synthetic metrics which aid the analysis, and create alerts when conditions require. To make this possible, the Azure-based streaming service hosts a real-time digital twin for each data source. It describes properties to be maintained for the data source and an application-defined algorithm for processing incoming messages from the data source.

Digital twin models used in product lifecycle management (PLM) or in IoT device modeling (for example, Azure Digital Twins) just describe the properties of physical entities, usually to allow querying by business processes. In contrast, real-time digital twins analyze incoming telemetry from each data source and track changes in its state. Their analysis determines whether immediate action needs to be taken to resolve an issue (or identify an opportunity). Real-time digital twins typically employ domain-specific knowledge to analyze incoming messages, maintain relevant state information, and trigger alerts.

For example, a PLM digital twin of a truck engine might describe the properties of the engine, such as its temperature and oil pressure. A real-time digital twin would take the next step by hosting a predictive analytics algorithm that analyzes changes in these properties. It could use dynamic information about recent usage and service history to determine whether a failure is imminent and the driver should be alerted, as shown below:

Implementing Real-Time Digital Twins

Real-time digital twins are designed to be easy to develop and modify. They make use of standard object-oriented concepts and languages (such as C#, Java, and JavaScript). A real-time digital twin consists of two components implemented by the application: a state object which defines the properties to be maintained for each data source, and a message-processing method, which defines an algorithm for analyzing incoming messages from a specific data source. The method contains domain-specific knowledge, such as a predictive analytics algorithm for truck engines. These two components are referred to as a real-time digital twin model, which serves as a template for creating instances, one for every data source.

To simplify development, the ScaleOut Digital Twin Streaming Service provides base classes that can be used to create real-time digital twins and then submit them to the cloud service for execution, as illustrated in the following diagram:

Once the real-time digital twin model has been uploaded, the streaming service automatically creates an instance for every data source and forwards incoming messages from that data source to the instance for processing. Data sources can send messages to their corresponding real-time digital twin instances (and receive replies) using message hubs or a built-in REST service.

Debugging with a Mock Environment

Although these models are simple and easy to build, the number of steps in the deployment process can make it cumbersome to catch coding errors in the early stages of model development. To address this challenge and enable rapid model testing within a controlled environment (for example, within Visual Studio running on a development workstation), the streaming service provides an alternative execution platform, called the mock environment, which can be targeted during development. This environment runs standalone on a workstation and allows an application to create a limited number of real-time digital twin instances. It also provides an API for sending messages to instances and for receiving replies using the same message-exchange protocol that would be used with the cloud-based REST service.

The mock development environment is shown below:

Once a model has been created, it can be tested using a client test program that sends messages that simulate the behavior of one or more data sources. This exercises the model’s code and surfaces issues and exceptions, which can be readily examined and resolved in a controlled environment. When the model behaves as expected, it can then be deployed to the streaming service for execution with live data sources. Note that the model’s code can log messages, which are available for reading in the mock environment and are displayed in the streaming service’s web UI after the model is deployed.

Summing Up

Real-time digital twins offer an important new tool for analyzing telemetry streams from large numbers of data sources, providing immediate feedback for each data source, and maintaining real-time aggregate statistics that boost situational awareness. Unlike PLM-style digital twins, which host the properties of a physical data source for downstream analysis, real-time digital twins provide a means to analyze and respond to a data source’s telemetry within milliseconds, while exposing aggregate trends within seconds. Their functionality fills an important gap in streaming analytics, namely tracking thousands or even a million data sources with fast, individualized feedback.

Amazingly, the power of real-time digital twins can be harnessed with a small amount of application code that contains domain-specific knowledge. The streaming service takes care of all the complexities of message delivery, accessing state data, scaling for thousands of data sources, and high availability. By using a mock development environment, application developers can quickly create, debug, and test real-time digital models prior to their deployment in production. This powerful new approach to streaming analytics solves an important unmet need and offers an impressive combination of power and ease of use.

For detailed information on building real-time digital twin models and using a mock environment, please consult the ScaleOut Digital Twin Streaming Service User Guide.

 

The post Developing Real-Time Digital Twins for Cloud Deployment appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/featured/developing-real-time-digital-twins-for-cloud-deployment/feed/ 0
Why Use “Real-Time Digital Twins” for Streaming Analytics? https://www.scaleoutsoftware.com/technology/why-use-real-time-digital-twins-for-streaming-analytics/ https://www.scaleoutsoftware.com/technology/why-use-real-time-digital-twins-for-streaming-analytics/#respond Wed, 05 Aug 2020 22:15:05 +0000 https://www.scaleoutsoftware.com/?p=6765 And how are they different from streaming pipelines like Azure Stream Analytics and Apache Flink/Beam?   What Problems Does Streaming Analytics Solve? To understand why we need real-time digital twins for streaming analytics, we first need to look at what problems are tackled by popular streaming platforms. Most if not all platforms focus on mining […]

The post Why Use “Real-Time Digital Twins” for Streaming Analytics? appeared first on ScaleOut Software.

]]>
And how are they different from streaming pipelines like Azure Stream Analytics and Apache Flink/Beam?

 

What Problems Does Streaming Analytics Solve?

To understand why we need real-time digital twins for streaming analytics, we first need to look at what problems are tackled by popular streaming platforms. Most if not all platforms focus on mining the data within an incoming message stream for patterns of interest. For example, consider a web-based ad-serving platform that selects ads for users and logs messages containing a timestamp, user ID, and ad ID every time an ad is displayed. A streaming analytics platform might count all the ads for each unique ad ID in the latest five-minute window and repeat this every minute to give a running indication of which ads are trending.

Based on technology from the Trill research project, the Microsoft Stream Analytics platform offers an elegant and powerful platform for implementing applications like this. It views the incoming stream of messages as a columnar database with the column representing a time-ordered history of messages. It then lets users create SQL-like queries with extensions for time-windowing to perform data selection and aggregation within a time window, and it does this at high speed to keep up with incoming data streams.

Other streaming analytic platforms, such as open-source Apache Storm, Flink, and Beam and commercial implementations such as Hazelcast Jet, let applications pass an incoming data stream through a pipeline (or directed graph) of processing steps to extract information of interest, aggregate it over time windows, and create alerts when specific conditions are met. For example, these execution pipelines could process a stock market feed to compute the average stock price for all equities over the previous hour and trigger an alert if an equity moves up or down by a certain percentage. Another application tracking telemetry from gas meters could likewise trigger an alert if any meter’s flow rate deviates from its expected value, which might indicate a leak.

What’s key about these stream-processing applications is that they focus on examining and aggregating properties of data communicated in the stream. Other than by observing data in the stream, they do not track the dynamic state of the data sources themselves, and they don’t make inferences about the behavior of the data sources, either individually or in aggregate. So, the streaming analytics platform for the ad server doesn’t know why each user was served certain ads, and the market-tracking application does not know why each equity either maintained its stock price or deviated materially from it. Without knowing the why, it’s much harder to take the most effective action when an interesting situation develops. That’s where real-time digital twins can help.

The Need for Real-Time Digital Twins

Real-time digital twins shift the application’s focus from the incoming data stream to the dynamically evolving state of the data sources. For each individual data source, they let the application incorporate dynamic information about that data source in the analysis of incoming messages, and the application can also update this state over time. The net effect is that the application can develop a significantly deeper understanding about the data source so that it can take effective action when needed. This cannot be achieved by just looking at data within the incoming message stream.

For example, the ad-serving application can use a real-time digital twin for each user to track shopping history and preferences, measure the effectiveness of ads, and guide ad selection. The stock market application can use a real-time digital twin for each company to track financial information, executive changes, and news releases that explain why its stock price starts moving and filter out trades that don’t fit desired criteria.

Also, because real-time digital twins maintain dynamic information about each data source, applications can aggregate this highly curated data instead of just aggregating data in the data stream. This gives users deeper insights into the overall state of all data sources and boosts “situational awareness” that is hard to maintain by just looking at the message stream.

An Example

Consider a trucking fleet that manages thousands of long-haul trucks on routes throughout the U.S. Each truck periodically sends telemetry messages about its location, speed, engine parameters, and cargo status (for example, trailer temperature) to a real-time monitoring application at a central location. With traditional streaming analytics, personnel can detect changes in these parameters, but they can’t assess their significance to take effective, individualized action for each truck. Is a truck stopped because it’s at a rest stop or because it has stalled? Is an out-of-spec engine parameter expected because the engine is scheduled for service or does it indicate that a new issue is emerging? Has the driver been on the road too long? Does the driver appear to be lost or entering a potentially hazardous area?

The use of real-time digital twins provides the context needed for the application to answer these questions as it analyzes incoming messages from each truck. For example, it can keep track of the truck’s route, schedule, cargo, mechanical and service history, and information about the driver. Using this information, it can alert drivers to impending problems, such as road blockages, delays or emerging mechanical issues. It can assist lost drivers, alert them to erratic driving or the need for rest stops, and help when changing conditions require route updates.

The following diagram shows a truck communicating with its associated real-time digital twin. (The parallelogram represents application code.) Because the twin holds unique contextual data for each truck, analysis code for incoming messages can provide highly focused feedback that goes well beyond what is possible with traditional streaming analytics:

As illustrated below, the ScaleOut Digital Twin Streaming Service™ runs as a cloud-hosted service in the Microsoft Azure cloud to provide streaming analytics using real-time digital twins. It can exchange messages with thousands of trucks across the U.S., maintain a real-time digital twin for each truck, and direct messages from that truck to its corresponding twin. It simplifies application code, which only needs to process messages from a given truck and has immediate access to dynamic, contextual information that enhances the analysis. The result is better feedback to drivers and enhanced overall situational awareness for the fleet.

Lower Complexity and Higher Performance

While the functionality implemented by real-time digital twins can be replicated with ad hoc solutions that combine application servers, databases, offline analytics, and visualization, they would require vastly more code, a diverse combination of skill sets, and longer development cycles. They also would encounter performance bottlenecks that require careful analysis to measure and resolve. The real-time digital twin model running on ScaleOut Software’s integrated execution platform sidesteps these obstacles.

Scaling performance to maintain high throughput creates an interesting challenge for traditional streaming analytics platforms because the work performed by their task pipelines does not naturally map to a set of processing cores within multiple servers. Each pipeline stage must be accelerated with parallel execution, and some stages require longer processing time than others, creating bottlenecks in the pipeline.

In contrast, real-time digital twins naturally create a uniformly large set of tasks that can be evenly distributed across servers. To minimize network overhead, this mapping follows the distribution of in-memory objects within ScaleOut’s in-memory data grid, which holds the state information for each twin. This enables the processing of real-time digital twins to scale transparently without adding complexity to either applications or the platform.

Summing Up

Why use real-time digital twins? They solve an important challenge for streaming analytics that is not addressed by other, “pipeline-oriented” platforms, namely, to simultaneously track the state of thousands of data sources. They use contextual information unique to each data source to help interpret incoming messages, analyze their importance, and generate feedback and alerts tailored to that data source.

Traditional streaming analytics finds patterns and trends in the data stream. Real-time digital twins identify and react to important state changes in the data sources themselves. As a result, applications can achieve better situational awareness than previously possible. This new way of implementing streaming analytics can be used in a wide range of applications. We invite you to take a closer look.

 

The post Why Use “Real-Time Digital Twins” for Streaming Analytics? appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/technology/why-use-real-time-digital-twins-for-streaming-analytics/feed/ 0
Voluntary Contact Self-Tracing for Companies https://www.scaleoutsoftware.com/featured/voluntary-contact-self-tracing-for-companies/ https://www.scaleoutsoftware.com/featured/voluntary-contact-self-tracing-for-companies/#respond Sat, 11 Jul 2020 19:50:18 +0000 https://www.scaleoutsoftware.com/?p=6640 Tracking employee interactions can help get back to work faster.   How Voluntary Self-Tracing Helps In a previous blog post, we explored how voluntary contact self-tracing can assist other contact tracing techniques in alerting people who may have been exposed to the COVID-19 virus. This technique enables participants to log interactions with others so that […]

The post Voluntary Contact Self-Tracing for Companies appeared first on ScaleOut Software.

]]>
Tracking employee interactions can help get back to work faster.

 

How Voluntary Self-Tracing Helps

In a previous blog post, we explored how voluntary contact self-tracing can assist other contact tracing techniques in alerting people who may have been exposed to the COVID-19 virus. This technique enables participants to log interactions with others so that they can discover if they are in a chain of contacts originating with someone, often a stranger, who subsequently tests positive for the virus. These contacts could include friends at a barbeque, grocery checkers, hairdressers, restaurant waitstaff, taxi drivers, or other interactions.

In contrast to highly publicized, proximity-based contact tracing by using mobile devices, voluntary self-tracing avoids security and privacy issues that have threatened widespread adoption. It also adds human judgment to the process so that the chain of contacts captures only potentially risky interactions. This is accomplished in advance of a positive test, enabling immediate notifications when the need arises.

Voluntary self-tracing offers huge value in connecting strangers who otherwise would not be notified about the need for testing without arduous manual contact tracing. However, it imposes the burden that everyone participates in a common tracing system and consistently makes the effort to log interactions. While this might restrict its appeal for public use, it could be readily adopted by companies, which have well-known, slowly changing populations and established working relationships and protocols.

Helping Companies Get Back to Work

Consider a company that has multiple departments distributed across several locations. As employees come back to work, they typically interact closely with colleagues in the same department. If anyone in the department tests positive for COVID-19, it’s likely that all of these colleagues have been exposed and need to get tested. In addition, employees occasionally interact with colleagues in other departments, both at the same site and at remote sites. These interactions also need to be tracked to contain exposure within the organization, as illustrated in the following diagram:

Voluntary contact self-tracing can handle the most common scenarios by using the company’s employee database to automatically connect colleagues who work in the same department and interact daily. Employees need only manually log contacts they make with employees in other departments. These interactions are relatively infrequent and tracked for a limited period of time (typically two weeks). This approach streamlines the work required to track contacts, while enabling the company to immediately identify all employees who need to be notified, tested, and possibly isolated after one person tests positive.

In addition, employees can manually track information about contacts they make while on business travel, such as during airline flights, taxi rides, and meals at restaurants. That way, when an employee tests positive, these external contacts can be immediately alerted of possible exposure. This enables companies to assist their communities in contact tracing and help contain the spread of COVID-19.

Enabling Technology: In-Memory Computing

Many large companies have tens of thousands of employees and need to perform fast, efficient contact tracing. They require both immediate notifications and up-to-the-moment statistics that identify emerging trends, such as hot spots at one of their offices. To make this possible, a technology called in-memory computing can be used to track contacts and immediately alert all affected employees (and community touchpoints, such as restaurants) when anyone tests positive and alerts the system. Using a mobile app connected to a cloud service, it creates and maintains a dynamic web of contacts that evolves as interactions occur and time passes.

For example, when an employee tests positive and alerts the system, all colleagues in the same department are quickly notified, as are employees in other departments with whom interactions have occurred. The contact tracing system follows the chain of contacts across departments at all locations within the company. It also notifies community contacts, such as airlines and taxi companies, of possible exposures so that they can take the appropriate action.

Within the cloud service, the in-memory computing system maintains a software-based real-time digital twin for each employee. This software twin records and maintains all contacts for the employee, as well as all community contacts. It also removes non-recurring contacts after sufficient time passes and exposure is no longer likely. When an employee tests positive, the mobile app notifies the corresponding real-time digital twin in the cloud. This sets off the chain of communication that alerts all connected twins to the exposure and notifies their real-world counterparts.

Maximizing Situational Awareness

Real-time digital twins contain a wealth of dynamic, up-to-the-minute information that can be tapped to help managers maintain situational awareness about rapidly evolving exposures and ongoing progress to contain them. In-memory computing technology can aggregate this data and visually present the results to help immediately spot outbreaks and identify significant problem areas. For example, the following chart, which can be updated every few seconds, shows the number of employees who have just tested positive at each site within a company:

The chart shows a jump in cases for employees at the Florida site. Managers can then investigate the source of the outbreak by department at this site:

Not surprisingly, most cases are occurring in the Retail department, most likely because of its large number of interactions with customers, and this department needs to take additional steps to limit exposure. With real-time aggregate analytics, managers can also track other important indicators, such as the number of employees and sites affected by an outbreak, the average number of interconnected contacts, and the percentage of affected employees who have received notifications and taken action.

Getting Back to Work Safely

As companies strive to restore to a normal working environment, managers recognize the need to carefully track the occurrence of COVID-19 in the workplace and minimize its propagation throughout an organization. Immediately notifying and isolating all affected employees helps to limit the size of an outbreak, while analyzing the sources and evolution of incidents assists managers in the moment and as they develop new policies and strategies. With its ability to track and analyze fast-changing data in real time, in-memory computing technology offers a powerful and flexible toolset for contact tracing, helping employees get back to work safely.

 

The post Voluntary Contact Self-Tracing for Companies appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/featured/voluntary-contact-self-tracing-for-companies/feed/ 0
The Amazing Evolution of In-Memory Computing https://www.scaleoutsoftware.com/featured/the-amazing-evolution-of-in-memory-computing/ https://www.scaleoutsoftware.com/featured/the-amazing-evolution-of-in-memory-computing/#respond Mon, 22 Jun 2020 23:31:30 +0000 https://www.scaleoutsoftware.com/?p=6563 From Distributed Caches to Real-Time Digital Twins   Going back to the mid-1990s, online systems have seen relentless, explosive growth in usage, driven by ecommerce, mobile applications, and more recently, IoT. The pace of these changes has made it challenging for server-based infrastructures to manage fast-growing populations of users and data sources while maintaining fast […]

The post The Amazing Evolution of In-Memory Computing appeared first on ScaleOut Software.

]]>
From Distributed Caches to Real-Time Digital Twins

 

Going back to the mid-1990s, online systems have seen relentless, explosive growth in usage, driven by ecommerce, mobile applications, and more recently, IoT. The pace of these changes has made it challenging for server-based infrastructures to manage fast-growing populations of users and data sources while maintaining fast response times. For more than two decades, the answer to this challenge has proven to be a technology called in-memory computing.

In general terms, in-memory computing refers to the related concepts of (a) storing fast-changing data in primary memory instead of in secondary storage and (b) employing scalable computing techniques to distribute a workload across a cluster of servers. Assuming bottlenecks are avoided, this enables transparent throughput scaling that matches an increase in workload, which in turn keeps response times low for users. It can also take advantage of the elastic computing resources available in cloud infrastructures to quickly and cost-effectively scale throughput to meet changes in demand.

Harnessing the power of in-memory computing requires software platforms that can make in-memory computing’s scalability readily available to applications using APIs while hiding the complexity of its implementation. Emerging in the early 2000s, the first such platforms provided distributed caching on clustered servers with straightforward APIs for storing and retrieving in-memory objects. When first introduced, distributed caching offered a breakthrough for applications by storing fast-changing data in memory on a server cluster for consistently fast response times, while simultaneously offloading database servers that would otherwise become bottlenecked. For example, ecommerce applications adopted distributed caching to store session-state, shopping carts, product descriptions, and other data that shoppers need to be able to access quickly.

Software platforms for distributed caching, such as ScaleOut StateServer®, which was introduced in 2005, hide internal mechanisms for cluster membership, throughput scaling, and high availability to take full advantage of the cluster’s scalable memory without adding complexity to applications. They transparently distribute stored objects across the cluster’s servers and ensure that data is not lost if a server or network component fails.

As distributed caching has evolved over the last two decades, additional mechanisms for in-memory computing have been incorporated to take advantage of the computing power available in the server cluster. Parallel query enables stored objects on all servers to be scanned simultaneously to retrieve objects with desired properties. Data-parallel computing analyzes objects on the server cluster to extract and report patterns of interest; it scales much better than parallel query by avoiding network bottlenecks and by using the cluster’s computing resources.

Most recently, stream-processing has been implemented with in-memory computing to simultaneously analyze telemetry from thousands or even millions of data sources and track dynamic state information for each data source. ScaleOut Software’s real-time digital twin model provides straightforward APIs for implementing stream-processing applications within its ScaleOut Digital Twin Streaming Service™, an Azure-based cloud service, while hiding internal mechanisms, such as distributing incoming messages to in-memory objects, updating state information for each data source, and running aggregate analytics.

The following diagram shows the evolution of in-memory computing from distributed caching to stream-processing with real-time digital twins. Each step in the evolution has built on the previous one to add new capabilities that take advantage of the scalable computing power and fast data access that in-memory computing enables.

For ecommerce applications, this evolution has created new capabilities that dramatically improve the experience for online shoppers. Instead of just passively hosting session-state and shopping carts, online applications now can mine shopping carts for dynamic trends to evaluate the effectiveness of product descriptions and marketing programs (such as flash sales). They can also employ real-time digital twins or similar techniques to track each shopper’s behavior and make recommendations. By analyzing a click-stream of product selections in the context of knowledge of a shopper’s preferences and demographics, an ecommerce site can make highly focused recommendations to assist the shopper.

For example, one of ScaleOut Software’s customers recently upgraded from just using distributed caching to scale its ecommerce application. This customer now incorporates stream-processing capabilities using ScaleOut StreamServer® to capture click-streams and score users so that its web site can make more effective real-time offers.

The following diagram illustrates how the evolution of in-memory computing has enhanced the online experience for ecommerce shoppers by providing in-the-moment suggestions:

Starting with its development for parallel supercomputing in the late 1990s and evolving into its latest form as a cloud-based service, in-memory computing has offered powerful, software based APIs for building applications that serve large populations of users and data sources. It has helped assure that these applications deliver predictably fast performance and scale to meet the demands of growing workloads. In the next few years, we should continued innovation from in-memory computing to help ecommerce and other applications maintain their competitive edge.

The post The Amazing Evolution of In-Memory Computing appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/featured/the-amazing-evolution-of-in-memory-computing/feed/ 0
Using Real-Time Digital Twins for Aggregate Analytics https://www.scaleoutsoftware.com/featured/using-real-time-digital-twins-for-aggregate-analytics/ https://www.scaleoutsoftware.com/featured/using-real-time-digital-twins-for-aggregate-analytics/#respond Mon, 15 Jun 2020 18:14:37 +0000 https://www.scaleoutsoftware.com/?p=6535 Maintain and aggregate dynamic information for thousands of data sources.   When analyzing telemetry from a large population of data sources, such as a fleet of rental cars or IoT devices in “smart cities” deployments, it’s difficult if not impossible for conventional streaming analytics platforms to track the behavior of each individual data source and […]

The post Using Real-Time Digital Twins for Aggregate Analytics appeared first on ScaleOut Software.

]]>
Maintain and aggregate dynamic information for
thousands of data sources.

 

When analyzing telemetry from a large population of data sources, such as a fleet of rental cars or IoT devices in “smart cities” deployments, it’s difficult if not impossible for conventional streaming analytics platforms to track the behavior of each individual data source and derive actionable information in real time. Instead, most applications just sift through the telemetry for patterns that might indicate exceptional conditions and forward the bulk of incoming messages to a data lake for offline scrubbing with a big data tool such as Spark.

Maintain State Information for Each Data Source

An innovative new software technique called “real-time digital twins” leverages in-memory computing technology to turn the Lambda model for streaming analytics on its head and enable each data source to be independently tracked and responded to in real time. A real-time digital twin is a software object that encapsulates dynamic state information for each data source combined with application-specific code for processing incoming messages from that data source. This state information gives the code the context it needs to assess the incoming telemetry and generate useful feedback within 1-3 milliseconds.

For example, suppose an application analyzes heart rate, blood pressure, oxygen saturation, and other telemetry from thousands of people wearing smart watches or medical devices. By holding information about each user’s demographics, medical history, medications, detected anomalies, and current activity, real-time digital twins can intelligently assess this telemetry while updating their state information to further refine their feedback to each person. Beyond just helping real-time digital twins respond more effectively in the moment, maintaining context improves feedback over time.

Use State Information for Aggregate Analytics

State information held within real-time digital twins also provides a repository of significant data that can be analyzed in aggregate to spot important trends. With in-memory computing, aggregate analysis can be performed continuously every few seconds instead of waiting for offline analytics in a data lake. In this usage, relevant state information is computed for each data source and updated as telemetry flows in. It is then repeatedly extracted from all real-time digital twins and aggregated to highlight emerging patterns or issues that may need attention. This provides a powerful tool for maximizing overall situational awareness.

Consider an emergency monitoring system during the COVID-19 crisis that tracks the need for supplies across the nation’s 6,100+ hospitals and attempts to quickly respond when a critical shortage emerges. Let’s assume all hospitals send messages every few minutes to this system running in a central command center. These messages provide updates on various types and amounts of shortages (for example, of PPE, ventilators, and medicines) that the hospitals need to quickly rectify.  Using state information, a real-time digital twin for each hospital can both track and evaluate these shortages as they evolve. It can look at key indicators, such as the relative importance of each supply type and the rate at which the shortages are increasing, to create a dynamic measure of urgency that the hospital receive attention from the command center. All of this data is continuously updated within the real-time digital twin as messages arrive to give personnel the latest status.

Aggregate analysis can then compare this data across all hospitals by region to identify which regions have the greatest immediate need and track how fast and where overall needs are evolving. Personnel can then query state information within the real-time digital twins to quickly determine which specific hospitals should receive supplies and what specific supplies should be immediately delivered to them. Using real-time digital twins, all of this can be accomplished in seconds or minutes.

This analysis flow is illustrated in the following diagram:

As this example shows, real-time digital twins provide both a real-time filter and aggregator of the data stream from each data source to create dynamic information that is continuously extracted for aggregate analysis. Real-time digital twins also track detailed information about the data source that can be queried to provide a complete understanding of evolving conditions and enable appropriate action.

Numerous Applications Need Real-Time Monitoring

This new paradigm for streaming analytics can be applied to numerous applications. For example, it can be used in security applications to assess and filter incoming telemetry (such as likely false positives) from intrusion sensors and create an overall likelihood of a genuine threat from a given location within a large physical or cyber system. Aggregate analysis combined with queries can quickly evaluate the overall threat profile, pinpoint the source(s), and track how the threat is changing over time. This information enables personnel to assess the strategic nature of the threat and take the most effective action.

Likewise, disaster-recovery applications can use real-time digital twins to track assets needed to respond to emergencies, such as hurricanes and forest fires. Fleets of rental cars or trucks can use real-time digital twins to track vehicles and quickly identify issues, such as lost drivers or breakdowns. IoT applications can use real-time digital twins to implement predictive analytics for mission-critical devices, such as medical refrigerators. The list goes on.

Summing Up: Do More in Real Time

Conventional streaming analytics only attempt to perform superficial analysis of aggregated data streams and defer the bulk of analysis to offline processing. Because of their ability to maintain dynamic, application-specific information about each data source, real-time digital twins offer breathtaking new capabilities to track thousands of data sources in real time, provide intelligent feedback, and combine this with immediate, highly focused aggregate analysis. By harnessing the scalable power of in-memory computing, real-time digital twins are poised to usher in a new era in streaming analytics.

We invite you to learn more about the ScaleOut Digital Twin Streaming Service™, which is available for evaluation and production use today.

The post Using Real-Time Digital Twins for Aggregate Analytics appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/featured/using-real-time-digital-twins-for-aggregate-analytics/feed/ 0
Announcing the ScaleOut Digital Twin Streaming Service™ https://www.scaleoutsoftware.com/featured/announcing-dtss/ https://www.scaleoutsoftware.com/featured/announcing-dtss/#respond Tue, 19 May 2020 12:00:19 +0000 https://www.scaleoutsoftware.com/?p=6398 Today ScaleOut Software announces the release of its ground-breaking cloud service for streaming analytics using the real-time digital twin model. It’s called the ScaleOut Digital Twin Streaming Service™, and it’s now available for production use. Sign up to use the service here. A major challenge for stream-processing applications that track numerous data sources in real time is […]

The post Announcing the ScaleOut Digital Twin Streaming Service™ appeared first on ScaleOut Software.

]]>
Today ScaleOut Software announces the release of its ground-breaking cloud service for streaming analytics using the real-time digital twin model. It’s called the ScaleOut Digital Twin Streaming Service™, and it’s now available for production use. Sign up to use the service here.

A major challenge for stream-processing applications that track numerous data sources in real time is to analyze telemetry relevant to each specific data source and combine this with dynamic, contextual information about the data source to enable immediate action when necessary. For example, heart-rate telemetry from a smart watch cannot be effectively evaluated in isolation. Instead, it needs to be combined with knowledge of each person’s age, health, medications, and activity to determine when an alert should be generated.

A second and equally daunting challenge for live systems is to maintain real-time situational awareness about the state of all data sources so that strategic responses can be implemented, especially when a rapid sequence of events is unfolding. Whether it’s a rental car fleet with 100K vehicles on the road or a power grid with 40K nodes subject to outages, system managers need to quickly identify the scope of emerging problems and rapidly focus resources where most needed.

Traditional platforms for streaming analytics attempt to look at the entire telemetry pipeline using techniques such as SQL query to uncover and act on patterns of interest. But this approach is complex and leads to superficial analysis in real time, forcing telemetry to be logged into a data lake for later analysis using Spark or other tools. How do you trigger an alert to the wearer of a smart watch at the exact moment that the combination of telemetry fluctuations and knowledge about the individual’s health indicate that an alert is needed?

The key to creating straightforward stream-processing applications that can deal with these challenges lies in a software concept called the “real-time digital twin model.” Borrowed from its use in the field of product life-cycle management, real-time digital twins host application code that analyzes incoming telemetry (event messages) from each individual data source and maintains dynamically evolving information about the data source. This approach refactors and simplifies application code (which can be written in standard Java, C#, or JavaScript) to just focus on a single data source, introspect deeply, and better predict important events.

The following diagram illustrates how the ScaleOut Digital Twin Streaming Service hosts real-time digital twins that receive telemetry from individual data sources and send responses, including commands and alerts:

Because real-time digital twins maintain and dynamically update key information about each data source, aggregate analytics — essentially, continuous queries —  can continuously look for patterns in this curated data instead of in just the raw telemetry. This enables immediate, focused insights that enhance situational awareness. For example, the streaming service can generate a bar chart every few seconds to aggregate and highlight alerts by region generated by examining properties of real-time digital twins for thousands of data sources:

The ScaleOut Digital Twin Streaming Service plugs into popular event hubs, such as Azure IoT Hub, AWS IoT Core, and Kafka, to extract event messages and forward them to real-time digital twin instances, one for each data source. It then triggers application code to process the messages and gives it immediate access to memory-based contextual information for the data source. Application code can generate alerts, command devices, update the contextual information, and read or update databases as needed. This code can be thought of as similar to a serverless function with the major distinction that it is automatically supplied contextual information and does not have to maintain it in an external data store.

This highly scalable cloud service is designed to simultaneously and cost-effectively track telemetry from millions of data sources and provide real-time feedback in milliseconds while simultaneously performing continuous, aggregate analytics every few seconds. A powerful UI enables fast deployment of real-time digital twin models created using the ScaleOut Digital Twin Builder™ software toolkit. The UI lets users build graphical widgets which create and chart aggregate statistics. Under the floor, a powerful in-memory data grid with an integrated compute engine transparently ensures fast, predictable performance.

Given the current COVID-19 crisis, here’s a use case in which the streaming service can assist in prioritizing the distribution of critical medical supplies to the nation’s hospitals.  Hospitals distributed across the United States can send status updates to the cloud service regarding their shortfall of supplies such as ventilators and personal protective equipment. Within milliseconds, a dedicated real-time digital twin instance for each hospital can analyze incoming messages to track and evaluate the need for supplies, determine the hospital’s overall shortfall, and assess the urgency for immediate action, as depicted below:

The streaming service can then simultaneously analyze these results across the population of digital twin instances to determine in seconds which regions are exhibiting the most critical shortfall. This alerts logistics managers, who can then query the digital twins to identify specific hospitals and implement a strategic response:

The real-time digital twin approach creates a breakthrough for application developers that both simplifies application development and enhances introspection. It’s ideal for a wide range of applications, including real-time intelligent monitoring (the example above), Industrial Internet of Things (IIoT), logistics, security and disaster recovery, e-commerce recommendations, financial services, and much more. The ScaleOut Digital Twin Streaming Service is available now. We invite interested users to contact us here to learn more.

The post Announcing the ScaleOut Digital Twin Streaming Service™ appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/featured/announcing-dtss/feed/ 0
Real-Time Digital Twins Simplify Development https://www.scaleoutsoftware.com/featured/real-time-digital-twins-simplify-development/ https://www.scaleoutsoftware.com/featured/real-time-digital-twins-simplify-development/#respond Wed, 06 May 2020 19:11:13 +0000 https://www.scaleoutsoftware.com/?p=6332 The Challenge: Track Thousands of Data Sources Writing applications for streaming analytics can be complex and time consuming. Developers need to write code that extracts patterns out of an incoming telemetry stream and take appropriate action. In most cases, applications just export interesting patterns for visualization or offline analysis. Existing programming models make it too […]

The post Real-Time Digital Twins Simplify Development appeared first on ScaleOut Software.

]]>
The Challenge: Track Thousands of Data Sources

Writing applications for streaming analytics can be complex and time consuming. Developers need to write code that extracts patterns out of an incoming telemetry stream and take appropriate action. In most cases, applications just export interesting patterns for visualization or offline analysis. Existing programming models make it too difficult to perform meaningful analysis in real time.

This obstacle clearly presents itself when tracking the behavior of large numbers of data sources (thousands or more) and attempting to generate individualized feedback within several milliseconds after receiving a telemetry message. There’s no easy way to separately examine incoming telemetry from each data source, analyze it in the context of dynamically evolving information about the data source, and then generate an appropriate response.

An Example: Contact Self-Tracing

For example, consider the contact self-tracing application described in a previous blog. This application tracks messages from thousands of users logging risky contacts who might transmit the COVID19 virus to them. For each user, a list of contacts must be maintained. If a user signals the app that he or she has tested positive, the app successively notifies chained contacts until all connected users have been notified.

Implementing this application requires that state information be maintained for each user (such as the contact list) and updated whenever a message from that user arrives. In addition, when an incoming message signals that a user has tested positive, contact lists for all connected users must be quickly accessed to generate outgoing notifications.

In addition to this basic functionality, it would be highly valuable to compute real-time statistics, such as the number of users reporting positive by region, the average length of connection chains for all contacts, and the percentage of connected users who also report testing positive.

A Conventional Implementation

This application cannot be implemented by most streaming analytics platforms. As illustrated below, it requires standing up a set of cooperating services (encompassing a variety of skills), including:

  • A web service to process incoming messages (including notifications) by making calls to a backend database
  • A database service to host state information for each user
  • A backend analytics application (for example, a Spark app) that extracts information from the database, analyzes it, and exports it for visualization
  • A visualization tool that displays key statistics

Implementing and integrating these services requires significant work. After that, issues of scaling and high availability must be addressed. For example, how do we keep the database service from becoming a bottleneck when the number of users and update rate grow large? Can the web front end process notifications (which involve recursive chaining) without impacting responsiveness? If not, do we need to offload this work to an application server farm? What happens if a web or application server fails while processing notifications?

Enter the Real-Time Digital Twin

The real-time digital twin (RTDT) model was designed to address these challenges and simplify application development and deployment while also tackling scaling, high availability, real-time analytics, and visualization. This model uses standard object-oriented techniques to let developers easily specify both the state information to be maintained for each data source and the code required to process incoming messages from that data source. The rest is automatically handled by the hosting platform, which makes use of scalable, in-memory computing techniques that ensure high performance and availability.

Another big plus of this approach is that the state information for each instance of an RTDT can be immediately analyzed to provide important statistics in real time. Because this live state information is held in memory distributed across of a cluster of servers, the in-memory computing platform can analyze it and report results every few seconds. There’s no need to suffer the delay and complexity of copying it out to a data lake for offline analysis using an analytics platform like Spark.

The following diagram illustrates the steps needed to develop and deploy an RTDT model using the ScaleOut Digital Twin Streaming Service™, which includes built-in connectors for exchanging messages with data sources:

Implementing Contact Self-Tracing Using a Real-Time Digital Twin Model

Let’s take a look at just how easy it is to build an RTDT model for tracking users in the contact self-tracking application. Here’s an example in C# of the state information that needs to be tracked for each user:

public class UserTwin : DigitalTwinBase
{
    public string Alias;
    public string Email;
    public string MobileNumber;
    public Status CurrentStatus;  // Normal, TestedPositive, or Notified
    public int NumHopsIfNotified;
    public List<Contact> Contacts;
    public Dictionary<string, Contact> Notifiers;
}

This simple set of properties is sufficient to track each user. In additional to phone and/or email, each user’s current status (i.e., normal, reporting tested positive, or notified of a contact who has tested positive) is maintained. In case the user is notified by another contact, the number of hops to the connected user who reported tested positive is also recorded to help create statistics. There’s also a list of immediate contacts, which is updated whenever the user reports a risky interaction. Lastly, there’s a dictionary of incoming notifications to help prevent sending out duplicates.

The RTDT stream-processing platform automatically creates an instance of this state object for every user when the an account is created. The user can then send messages to the platform to either record an interaction or report having been tested positive. Here’s the application code required to process these messages:

foreach (var msg in newMessages)
{
    switch (msg.MsgType)
    {
        case MsgType.AddContact:
            newContact = new Contact();
            newContact.Alias = msg.ContactAlias;
            newContact.ContactTime = DateTime.UtcNow;
            dt.Contacts.Add(newContact);
            break;

        case MsgType.SignalPositive:
            dt.CurrentStatus = Status.SignaledPositive;

            // signal all of our contacts that we have tested positive:
            notifyMsg = new UserTwinMessage();
            notifyMsg.Id = dt.Alias;
            notifyMsg.MsgType = MsgType.Notify;
            notifyMsg.ContactAlias = dt.Alias;
            notifyMsg.ContactTime = DateTime.UtcNow;
            notifyMsg.NumHops = 0;

            foreach (var contact in dt.Contacts)
            {
                msgResult = context.SendToTwin("UserTwin", contact.Alias,
                                               notifyMsg);
            }
            break;
}}

Note that when a user signals that he or she has tested positive, this code sends a Notify message to all RTDT instances corresponding to users in the contact list. Handling this message type requires one more case to the above switch statement, as follows:

case MsgType.Notify:
    if (dt.CurrentStatus != Status.SignaledPositive)
        dt.CurrentStatus = Status.Notified;

    // if we have already heard from the root contact, ignore the message:
    if (msg.ContactAlias == dt.Alias || dt.Notifiers.ContainsKey(msg.ContactAlias))
        break;

    // otherwise, add the notifier and signal the user:
    else
    {
        if (dt.NumHopsIfNotified == 0)
            dt.NumHopsIfNotified = msg.NumHops;

        newContact = new Contact();
        newContact.Alias = msg.ContactAlias;
        newContact.ContactTime = msg.ContactTime;
        newContact.NumHops = msg.NumHops + 1;
        dt.Notifiers.Add(msg.ContactAlias, newContact);

        notifyMsg = new UserTwinMessage();
        notifyMsg.Id = dt.Alias;
        notifyMsg.MsgType = MsgType.Notify;
        notifyMsg.ContactAlias = msg.ContactAlias;
        notifyMsg.ContactTime = msg.ContactTime;
        notifyMsg.NumHops = msg.NumHops + 1;
    
        msgResult = context.SendToDataSource(notifyMsg);

        // finally, notify all our contacts except the root if it's a contact:

        foreach (var contact in dt.Contacts)
        {
            if (contact.Alias != msg.ContactAlias)
                msgResult = context.SendToTwin("UserTwin", contact.Alias,
                                               notifyMsg);
        }
    }                                      
    break;

That’s all there is to it. The key point is that the amount of code required to implement this application is small. Compare that to standing up web, application, database, and analytics services. In addition, integrated, real-time analytics within the RTDT platform can examine state variables to easily generate and visualize key statistics. For example, the CurrentStatus property and a Region property (not shown here) can be used to determine the average number of users who have tested positive by region. Likewise, the NumHopsIfNotified property can be used to determine the average number of connections traversed to notify users.

Summing Up
There’s no doubt that it’s a daunting challenge to create streaming analytics applications that track large numbers of data sources and respond individually to each one while simultaneously generating aggregate statistics that help maintain situational awareness. As we have seen, real-time digital twins can cut through this complexity and enable powerful applications to be quickly built with minimal code. This simplicity also makes them “agile” in the sense that they can be easily modified or extended to handle evolving requirements. You can find detailed information here to help you learn more.

The post Real-Time Digital Twins Simplify Development appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/featured/real-time-digital-twins-simplify-development/feed/ 0
Voluntary & Anonymous Contact “Self”-Tracing at Scale https://www.scaleoutsoftware.com/featured/voluntary-anonymous-contact-self-tracing-at-scale/ https://www.scaleoutsoftware.com/featured/voluntary-anonymous-contact-self-tracing-at-scale/#respond Tue, 28 Apr 2020 17:18:23 +0000 https://www.scaleoutsoftware.com/?p=6296 Cloud Software Lets Millions Track Risky Contacts A New Approach: Log Our Own Contacts in Advance As we all know, getting people back to work will require testing and contact tracing. The latter will need armies of people to track down all contacts of each person who tests positive for coronavirus. Leading software companies are […]

The post Voluntary & Anonymous Contact “Self”-Tracing at Scale appeared first on ScaleOut Software.

]]>
Cloud Software Lets Millions Track Risky Contacts

A New Approach: Log Our Own Contacts in Advance

As we all know, getting people back to work will require testing and contact tracing. The latter will need armies of people to track down all contacts of each person who tests positive for coronavirus. Leading software companies are building mobile apps to log the places we have been and determine possible contacts. However, these apps will be complex by relying on Bluetooth wireless technology to detect proximity, and they raise concerns regarding both accuracy and privacy. Experts have stated that humans need to be in the loop for contact tracing to be effective. Maybe there’s a hybrid approach that offers promise in the near term.

What if we could easily and anonymously let people keep track of encounters as they occur that they judge to be potentially risky, such as with work colleagues, merchants, neighbors, and friends? As people log these contacts using aliases for privacy, cloud software could build a web of connections, often connecting strangers through intermediaries. Later, when a person tests positive, he or she could notify this software. It then could follow the breadcrumbs and anonymously alert via text message or email all people who recently came into contact and should be tested and/or self-isolated.

Here’s an example. When a grocery checker with the alias “flash88” tests positive for COVID-19, he can anonymously alert a chain of people who are connected by direct or intermediate contacts who have logged significant, recent encounters, such as haircuts or backyard barbeques:

Although voluntarily “self-tracing” our contacts would require proactive effort for each of us to log individual encounters, it could be done quickly and simply by just entering a person’s anonymous alias into a mobile app or web page.  Most people likely would choose to do this only for lengthy interactions, such as with colleagues working closely together, friends at a barbeque, or perhaps a hairdresser or server at a restaurant. Location information could be included if permitted. What emerges from countless individual actions is a massive, continuously evolving web of contacts that can be immediately called upon for alerting when anyone tests positive.

For self-tracing to be effective, people who come into mutual contact need to register aliases and contact information (email or mobile number) with the software. As each person encounters a potentially risky contact and logs that contact’s alias, the system builds a record of the contact just for the period of time that risk of infection is possible, possibly two weeks. Regular work contacts could automatically be refreshed on a schedule.

The power of self-tracing is its ability to give us automatic, immediate — and anonymous — notification of exposure risk from a chain of contacts. While this tool does not replace standard contact tracing, it can add important value in its simplicity, timeliness, and incorporation of human judgment. As an alternative to more complicated and invasive Bluetooth-based contact tracing software, it could help accelerate the return to work for colleagues and businesses while offloading some of the work for contact tracers.

Advanced Capabilities

Beyond just tracking contacts, cloud-hosted software can keep track of important statistics, such as when and where (if permitted) a person tested positive or was alerted and how many in a chain separate a person from the source of an alert. Real-time analytics can continuously evaluate this data to immediately identify important trends, such as the locations where an unusually large number of alerts are occurring. This allows personnel to quickly respond and institute a self-isolation protocol where necessary.

Real-time analytics also can generate other useful statistics, such as the average chain length that results in co-infection and the percentage of connected people who actually become co-infected. If anonymous demographics are maintained and submitted by users, statistics can be computed by gender, age, and other parameters useful to healthcare professionals.

The Tech: In-Memory Cloud Computing Makes Self-Tracing Fast and Scalable

Cloud-hosted software technology called in-memory computing makes this contact tracing technique fast, scalable and quickly deployable. (It also can be used to assist other contact tracing efforts and for asset tracking.) While simultaneously tracking contacts for millions of people, this software can alert all related contacts in a matter of seconds after notification, and it can send out many thousands of alerts every second.

When a person tests positive and notifies the software, a cloud-based system uses the record of contacts kept with each person to send out alerts, and it follows these records from contact to contact until all mutually connected people have been alerted. In addition, human contact tracers could take advantage of this network (if permitted by users) to aid in their investigations.

ScaleOut Software has developed an in-memory, cloud-hosted software technology called real-time digital twins which make hosting this application easy, fast, and flexible. As illustrated below, cloud software can maintain a real-time digital twin for each user being tracked in the system to keep dynamic data for both alerting and real-time analytics. In addition to processing alerts, this software continuously extracts dynamic data from the real-time digital twins and analyzes it every few seconds. This makes it possible to generate and visualize the statistics described above in real time. Using real-time digital twins enables an application like this to be implemented within just a few days instead of weeks or months.

Note: To the extent possible, ScaleOut Software will make its cloud-based ScaleOut Digital Twin Streaming Service™ available free of charge (except for fees from the cloud provider) for public institutions needing help tracking data to assist in the COVID19 crisis.

Summing Up

Anonymous, voluntary, contact self-tracing has the potential to fill an important gap as a hybrid approach between manual contact tracing and complex, fully automated, location-based technologies. In work settings, it could be especially useful in protecting colleagues and customers. It offers a powerful tool to help contain the spread of COVID19, maximize situational awareness for healthcare workers and contact tracers, and minimize risks from exposure for all of us.

The post Voluntary & Anonymous Contact “Self”-Tracing at Scale appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/featured/voluntary-anonymous-contact-self-tracing-at-scale/feed/ 0
Track Thousands of Assets in a Time of Crisis Using Real-Time Digital Twins https://www.scaleoutsoftware.com/featured/track-thousands-of-assets-in-a-time-of-crisis-using-real-time-digital-twins/ https://www.scaleoutsoftware.com/featured/track-thousands-of-assets-in-a-time-of-crisis-using-real-time-digital-twins/#respond Fri, 03 Apr 2020 19:53:38 +0000 https://www.scaleoutsoftware.com/?p=6230 Especially at this time of crisis when minutes count as the states scramble to obtain critical medical supplies, it’s vitally important to be able to track many thousands of assets, such as masks, gloves, and ventilators, and quickly stage them where they are needed. What’s missing is a flexible, fast, and easy-to-use software system that […]

The post Track Thousands of Assets in a Time of Crisis Using Real-Time Digital Twins appeared first on ScaleOut Software.

]]>
Especially at this time of crisis when minutes count as the states scramble to obtain critical medical supplies, it’s vitally important to be able to track many thousands of assets, such as masks, gloves, and ventilators, and quickly stage them where they are needed. What’s missing is a flexible, fast, and easy-to-use software system that can be quickly adapted to track these assets in real time and provide immediate answers for logistics managers. An innovative new software approach called “real-time digital twins” running on a cloud-hosted, highly scalable, in-memory computing platform can help address this challenge.

What are real-time digital twins and why are they useful here?

A “real-time digital twin” is a software concept that can track the key parameters for an individual asset, such as a box of masks or a ventilator, and update these parameters in milliseconds as messages flow in from personnel in the field (or directly from smart devices). For example, the parameters for a ventilator could include its identifier, make and model, current location, status (in use, in storage, broken), time in use, technical issues and repairs, and contact information. The real-time digital twin software tracks and updates this information using incoming messages whenever significant events affecting the ventilator occur, such as when it moves from place to place, is put in use, becomes available, encounters a mechanical issue, has an expected repair time, etc. This software can simultaneously perform these actions for hundreds of thousands of ventilators to keep this vital logistical information instantly available for real-time analysis.

With up-to-date information for all ventilators immediately at hand, analysts can ask questions like:

  • “Where are all the available ventilators at this moment?”
  • “Show me a list of currently available or soon to be available ventilators in my county right now.”
  • “What is the average time that ventilators have been in use per patient for each state?
  • “Which hospital in a given state has the most unused ventilators?”
  • “How many ventilators currently are in repair by make?”

These questions can be answered using the latest data as it streams in from the field. Within seconds, the software performs aggregate analysis of this data for all real-time digital twins. By avoiding the need to create or connect to complex databases and ship data to offline analytics systems, it can provide timely answers quickly and easily.

Besides just tracking assets, real-time digital twins also can track needs. For example, real-time digital twins of hospitals can track quantities of needed supplies in addition to supplies of assets on hand. This allows quick answers to questions such as:

  • “Show me the percentage shortfall in ventilators by state.”
  • “Which hospitals in a state currently have more than a 25% shortfall (or excess) in ventilators?”

Unlike powerful big data platforms which focus on deep and often lengthy analysis to make future projections, what real-time digital twins offer is timeliness in obtaining quick answers to pressing questions using the most current data. This allows decision makers to maximize their situational awareness in rapidly evolving situations.

Of course, keeping data up to date relies on the ability to send messages to the software hosting real-time digital twins whenever a significant event occurs, such as when a ventilator is taken out of storage or activated for a patient. Field personnel with mobile devices can send these messages over the Internet to the cloud service. It also might be possible for smart devices like ventilators to send their own messages automatically when activated and deactivated or if a problem occurs.

The following diagram illustrates how real-time digital twins running in a cloud service can receive messages from thousands of physical data sources across the country:

How Do Real-Time Digital Twins Work?

What gives real-time digital twins their agility compared to complex, enterprise-based data management systems is their simplicity. A real-time digital twin consists of two components: a software object describing the properties of the physical asset being tracked and a software method (that is, code) which describes how to update these properties when an incoming message arrives. This method also can analyze changes in the properties and send an alert when conditions warrant.

Consider a simple example in which a message arrives signaling that a ventilator has been activated for a patient. The software method receives the message and then records the activation time in a property within the associated object. When the ventilator is deactivated, the method can both record the time and update a running average of usage time for each patient. This allows analysts to ask, for example, “What is the average time in use for all ventilators by state?” which could serve as indication of increased severity of cases in some states.

Because of this extremely simple software formulation, real-time digital twins can be created and enhanced quickly and easily. For example, if analysts observe that several ventilators are being marked as failed, they could add properties to track the type of failure and the average time to repair.

The power of real-time digital twin approach lies in the use of a scalable, in-memory computing system which can host thousands (or even millions) of twins to track very large numbers of assets in real time. The computing system also has the ability to perform aggregate analytics in seconds on the continuously evolving data held in the twins. This enables analysts to obtain immediate results with the very latest information and make decisions within minutes.

In this time of crisis, it’s likely the case that the technology of real-time digital twins has arrived at the right time to help our overtaxed medical professionals.

Note: To the extent possible, ScaleOut Software will make its cloud-based ScaleOut Digital Twin Streaming Service™ available free of charge (except for fees from the cloud provider) for institutions needing help tracking data to assist in the COVID19 crisis.

The post Track Thousands of Assets in a Time of Crisis Using Real-Time Digital Twins appeared first on ScaleOut Software.

]]>
https://www.scaleoutsoftware.com/featured/track-thousands-of-assets-in-a-time-of-crisis-using-real-time-digital-twins/feed/ 0